## Convolution method (example 6.6 of Klugman et al. (2004))
fx <- c(0, 0.15, 0.2, 0.25, 0.125, 0.075,
0.05, 0.05, 0.05, 0.025, 0.025)
pn <- c(0.05, 0.1, 0.15, 0.2, 0.25, 0.15, 0.06, 0.03, 0.01)
Fs <- aggregateDist("convolution", model.freq = pn,
model.sev = fx, x.scale = 25)
summary(Fs)
c(Fs(0), diff(Fs(25 * 0:21))) # probability mass function
plot(Fs)
## Recursive method
Fs <- aggregateDist("recursive", model.freq = "poisson",
model.sev = fx, lambda = 3, x.scale = 25)
plot(Fs)
## Normal Power approximation
Fs <- aggregateDist("npower", moments = c(200, 200, 0.5))
Fs(210)
## Simulation method
model.freq <- expression(data = rpois(3))
model.sev <- expression(data = rgamma(100, 2))
Fs <- aggregateDist("simulation", nb.simul = 1000,
model.freq, model.sev)
mean(Fs)
plot(Fs)
Run the code above in your browser using DataLab