Learn R Programming

actuar (version 0.9-4)

InverseTransformedGamma: The Inverse Transformed Gamma Distribution

Description

Density function, distribution function, quantile function, random generation, raw moments, and limited moments for the Inverse Transformed Gamma distribution with parameters shape1, shape2 and scale.

Usage

dinvtrgamma(x, shape1, shape2, rate = 1, scale = 1/rate,
            log = FALSE)
pinvtrgamma(q, shape1, shape2, rate = 1, scale = 1/rate,
            lower.tail = TRUE, log.p = FALSE)
qinvtrgamma(p, shape1, shape2, rate = 1, scale = 1/rate,
            lower.tail = TRUE, log.p = FALSE)
rinvtrgamma(n, shape1, shape2, rate = 1, scale = 1/rate)
minvtrgamma(order, shape1, shape2, rate = 1, scale = 1/rate)
levinvtrgamma(limit, shape1, shape2, rate = 1, scale = 1/rate,
              order = 1)

Arguments

x, q
vector of quantiles.
p
vector of probabilities.
n
number of observations. If length(n) > 1, the length is taken to be the number required.
shape1, shape2, scale
parameters. Must be strictly positive.
rate
an alternative way to specify the scale.
log, log.p
logical; if TRUE, probabilities/densities $p$ are returned as $\log(p)$.
lower.tail
logical; if TRUE (default), probabilities are $P[X \le x]$, otherwise, $P[X > x]$.
order
order of the moment.
limit
limit of the loss variable.

Value

  • dinvtrgamma gives the density, pinvtrgamma gives the distribution function, qinvtrgamma gives the quantile function, rinvtrgamma generates random deviates, minvtrgamma gives the $k$th raw moment, and levinvtrgamma gives the $k$th moment of the limited loss variable.

    Invalid arguments will result in return value NaN, with a warning.

Details

The Inverse Transformed Gamma distribution with parameters shape1 $= \alpha$, shape2 $= \tau$ and scale $= \theta$, has density: $$f(x) = \frac{\tau u^\alpha e^{-u}}{x \Gamma(\alpha)}, \quad u = (\theta/x)^\tau$$ for $x > 0$, $\alpha > 0$, $\tau > 0$ and $\theta > 0$. (Here $\Gamma(\alpha)$ is the function implemented by R's gamma() and defined in its help.)

The Inverse Transformed Gamma is the distribution of the random variable $\theta X^{-1/\tau},$ where $X$ has a Gamma distribution with shape parameter $\alpha$ and scale parameter $1$ or, equivalently, of the random variable $Y^{-1/\tau}$ with $Y$ a Gamma distribution with shape parameter $\alpha$ and scale parameter $\theta^{-\tau}$.

The Inverse Transformed Gamma distribution defines a family of distributions with the following special cases:

The $k$th raw moment of the random variable $X$ is $E[X^k]$ and the $k$th limited moment at some limit $d$ is $E[\min(X, d)^k]$.

References

Klugman, S. A., Panjer, H. H. and Willmot, G. E. (2004), Loss Models, From Data to Decisions, Second Edition, Wiley.

Examples

Run this code
exp(dinvtrgamma(2, 3, 4, 5, log = TRUE))
p <- (1:10)/10
pinvtrgamma(qinvtrgamma(p, 2, 3, 4), 2, 3, 4)
minvtrgamma(2, 3, 4, 5)
levinvtrgamma(200, 3, 4, 5, order = 2)

Run the code above in your browser using DataLab