Density function, distribution function, quantile function, random generation,
raw moments and limited moments for the Feller Pareto distribution
with parameters min
, shape1
, shape2
, shape3
and
scale
.
dfpareto(x, min, shape1, shape2, shape3, rate = 1, scale = 1/rate,
log = FALSE)
pfpareto(q, min, shape1, shape2, shape3, rate = 1, scale = 1/rate,
lower.tail = TRUE, log.p = FALSE)
qfpareto(p, min, shape1, shape2, shape3, rate = 1, scale = 1/rate,
lower.tail = TRUE, log.p = FALSE)
rfpareto(n, min, shape1, shape2, shape3, rate = 1, scale = 1/rate)
mfpareto(order, min, shape1, shape2, shape3, rate = 1, scale = 1/rate)
levfpareto(limit, min, shape1, shape2, shape3, rate = 1, scale = 1/rate,
order = 1)
dfpareto
gives the density,
pfpareto
gives the distribution function,
qfpareto
gives the quantile function,
rfpareto
generates random deviates,
mfpareto
gives the \(k\)th raw moment, and
levfpareto
gives the \(k\)th moment of the limited loss
variable.
Invalid arguments will result in return value NaN
, with a warning.
vector of quantiles.
vector of probabilities.
number of observations. If length(n) > 1
, the length is
taken to be the number required.
lower bound of the support of the distribution.
parameters. Must be strictly positive.
an alternative way to specify the scale.
logical; if TRUE
, probabilities/densities
\(p\) are returned as \(\log(p)\).
logical; if TRUE
(default), probabilities are
\(P[X \le x]\), otherwise, \(P[X > x]\).
order of the moment.
limit of the loss variable.
Vincent Goulet vincent.goulet@act.ulaval.ca and Nicholas Langevin
The Feller-Pareto distribution with parameters min
\(= \mu\),
shape1
\(= \alpha\), shape2
\(= \gamma\),
shape3
\(= \tau\) and scale
\(= \theta\), has
density:
$$f(x) = \frac{\Gamma(\alpha + \tau)}{\Gamma(\alpha)\Gamma(\tau)}
\frac{\gamma ((x - \mu)/\theta)^{\gamma \tau - 1}}{%
\theta [1 + ((x - \mu)/\theta)^\gamma]^{\alpha + \tau}}$$
for \(x > \mu\), \(-\infty < \mu < \infty\),
\(\alpha > 0\), \(\gamma > 0\),
\(\tau > 0\) and \(\theta > 0\).
(Here \(\Gamma(\alpha)\) is the function implemented
by R's gamma()
and defined in its help.)
The Feller-Pareto is the distribution of the random variable $$\mu + \theta \left(\frac{1 - X}{X}\right)^{1/\gamma},$$ where \(X\) has a beta distribution with parameters \(\alpha\) and \(\tau\).
The Feller-Pareto defines a large family of distributions encompassing the transformed beta family and many variants of the Pareto distribution. Setting \(\mu = 0\) yields the transformed beta distribution.
The Feller-Pareto distribution also has the following direct special cases:
A Pareto IV distribution when shape3
== 1
;
A Pareto III distribution when shape1
shape3 == 1
;
A Pareto II distribution when shape1
shape2 == 1
;
A Pareto I distribution when shape1
shape2 == 1
and min = scale
.
The \(k\)th raw moment of the random variable \(X\) is \(E[X^k]\) for nonnegative integer values of \(k < \alpha\gamma\).
The \(k\)th limited moment at some limit \(d\) is \(E[\min(X, d)^k]\) for nonnegative integer values of \(k\) and \(\alpha - j/\gamma\), \(j = 1, \dots, k\) not a negative integer.
Note that the range of admissible values for \(k\) in raw and limited moments is larger when \(\mu = 0\).
Dutang, C., Goulet, V., Langevin, N. (2022). Feller-Pareto and Related Distributions: Numerical Implementation and Actuarial Applications. Journal of Statistical Software, 103(6), 1--22. tools:::Rd_expr_doi("10.18637/jss.v103.i06").
Abramowitz, M. and Stegun, I. A. (1972), Handbook of Mathematical Functions, Dover.
Arnold, B. C. (2015), Pareto Distributions, Second Edition, CRC Press.
Kleiber, C. and Kotz, S. (2003), Statistical Size Distributions in Economics and Actuarial Sciences, Wiley.
Klugman, S. A., Panjer, H. H. and Willmot, G. E. (2012), Loss Models, From Data to Decisions, Fourth Edition, Wiley.
dtrbeta
for the transformed beta distribution.
exp(dfpareto(2, 1, 2, 3, 4, 5, log = TRUE))
p <- (1:10)/10
pfpareto(qfpareto(p, 1, 2, 3, 4, 5), 1, 2, 3, 4, 5)
## variance
mfpareto(2, 1, 2, 3, 4, 5) - mfpareto(1, 1, 2, 3, 4, 5)^2
## case with shape1 - order/shape2 > 0
levfpareto(10, 1, 2, 3, 4, scale = 1, order = 2)
## case with shape1 - order/shape2 < 0
levfpareto(20, 10, 0.1, 14, 2, scale = 1.5, order = 2)
Run the code above in your browser using DataLab