Density function, distribution function, quantile function, random generation,
raw moments, and limited moments for the Inverse Gamma distribution
with parameters shape
and scale
.
dinvgamma(x, shape, rate = 1, scale = 1/rate, log = FALSE)
pinvgamma(q, shape, rate = 1, scale = 1/rate,
lower.tail = TRUE, log.p = FALSE)
qinvgamma(p, shape, rate = 1, scale = 1/rate,
lower.tail = TRUE, log.p = FALSE)
rinvgamma(n, shape, rate = 1, scale = 1/rate)
minvgamma(order, shape, rate = 1, scale = 1/rate)
levinvgamma(limit, shape, rate = 1, scale = 1/rate,
order = 1)
mgfinvgamma(t, shape, rate =1, scale = 1/rate, log =FALSE)
dinvgamma
gives the density,
pinvgamma
gives the distribution function,
qinvgamma
gives the quantile function,
rinvgamma
generates random deviates,
minvgamma
gives the \(k\)th raw moment,
levinvgamma
gives the \(k\)th moment of the limited loss
variable, and
mgfinvgamma
gives the moment generating function in t
.
Invalid arguments will result in return value NaN
, with a warning.
vector of quantiles.
vector of probabilities.
number of observations. If length(n) > 1
, the length is
taken to be the number required.
parameters. Must be strictly positive.
an alternative way to specify the scale.
logical; if TRUE
, probabilities/densities
\(p\) are returned as \(\log(p)\).
logical; if TRUE
(default), probabilities are
\(P[X \le x]\), otherwise, \(P[X > x]\).
order of the moment.
limit of the loss variable.
numeric vector.
Vincent Goulet vincent.goulet@act.ulaval.ca and Mathieu Pigeon
The inverse gamma distribution with parameters shape
\(=
\alpha\) and scale
\(= \theta\) has density:
$$f(x) = \frac{u^\alpha e^{-u}}{x \Gamma(\alpha)}, %
\quad u = \theta/x$$
for \(x > 0\), \(\alpha > 0\) and \(\theta > 0\).
(Here \(\Gamma(\alpha)\) is the function implemented
by R's gamma()
and defined in its help.)
The special case shape == 1
is an
Inverse Exponential distribution.
The \(k\)th raw moment of the random variable \(X\) is \(E[X^k]\), \(k < \alpha\), and the \(k\)th limited moment at some limit \(d\) is \(E[\min(X, d)^k]\), all \(k\).
The moment generating function is given by \(E[e^{tX}]\).
Kleiber, C. and Kotz, S. (2003), Statistical Size Distributions in Economics and Actuarial Sciences, Wiley.
Klugman, S. A., Panjer, H. H. and Willmot, G. E. (2012), Loss Models, From Data to Decisions, Fourth Edition, Wiley.
exp(dinvgamma(2, 3, 4, log = TRUE))
p <- (1:10)/10
pinvgamma(qinvgamma(p, 2, 3), 2, 3)
minvgamma(-1, 2, 2) ^ 2
levinvgamma(10, 2, 2, order = 1)
mgfinvgamma(-1, 3, 2)
Run the code above in your browser using DataLab