Learn R Programming

adana (version 1.1.0)

wax: Whole Arithmetic Crossover

Description

New offspring are produced by applying an arithmetic mean to all of the parents' chromosomes. (Davis, 1985; Back et.al, 1991; Michalewicz & Janikov, 1991; Michalewicz, 1992; Michalewicz, 1995).

Usage

wax(x1, x2, cxon, cxalfa, ...)

Arguments

x1

A vector. It contains the chromosomal information of parent-1.

x2

A vector. It contains the chromosomal information of parent-2.

cxon

Number of offspring to be generated as a result of crossover

cxalfa

Alpha value. If no value is entered, it is randomly selected by the function in the range [0,1].

Further arguments passed to or from other methods.

Value

A matrix containing the generated offsprings.

References

Davis, L. (1985). Aplaying adaptive algorithms to epistatics domains. In Proc. of the Int. Joint Conf. on Artificial Intellengence, Vol. 85, pp. 162-164.

Back, T., Hoffmeister, F. and Schwefel, H.P. (1991). A survey of evolution strategies. In Proc. of the 4th Int. Conf. on Genetic Algorithms, pp. 2-9. Morgan Kaufmann.

Michalewicz, Z. and Janikov, S.J. (1991). Genetic algorithms for numerical optimization. Statistics and Computing, 1(2), 75-91.

Michalewicz, Z. (1992). Genetic algorithms + data structures = evolution programs. Berlin-Heidelberg: Springer Verlag.

Michalewicz, Z. (1995). Genetic algorithms, numerical optimization and constraints. In Proc. of the 4th Int. Conf. on Genetic Algorithms. pp. 151-158. Morgan Kaufmann.

See Also

cross, px1, kpx, sc, rsc, hux, ux, ux2, mx, rrc, disc, atc, cpc, eclc, raoc, dc, ax, hc, sax, lax, bx, ebx, blxa, blxab, lapx, elx, geomx, spherex, pmx, mpmx, upmx, ox, ox2, mpx, erx, pbx, pbx2, cx, icx, smc

Examples

Run this code
# NOT RUN {
parent1 = c(1.1, 1.6, 0.0, 1.1, 1.4, 1.2)
parent2 = c(1.2, 0.0, 0.0, 1.5, 1.2, 1.4)
wax(parent1, parent2)
# }

Run the code above in your browser using DataLab