Learn R Programming

ade4 (version 1.7-19)

dudi.acm: Multiple Correspondence Analysis

Description

dudi.acm performs the multiple correspondence analysis of a factor table.
acm.burt an utility giving the crossed Burt table of two factors table.
acm.disjonctif an utility giving the complete disjunctive table of a factor table.
boxplot.acm a graphic utility to interpret axes.

Usage

dudi.acm (df, row.w = rep(1, nrow(df)), scannf = TRUE, nf = 2)
acm.burt (df1, df2, counts = rep(1, nrow(df1))) 
acm.disjonctif (df) 
# S3 method for acm
boxplot(x, xax = 1, ...)

Value

dudi.acm returns a list of class acm and dudi (see dudi) containing

cr

a data frame which rows are the variables, columns are the kept scores and the values are the correlation ratios

Arguments

df, df1, df2

data frames containing only factors

row.w, counts

vector of row weights, by default, uniform weighting

scannf

a logical value indicating whether the eigenvalues bar plot should be displayed

nf

if scannf FALSE, an integer indicating the number of kept axes

x

an object of class acm

xax

the number of factor to display

...

further arguments passed to or from other methods

Author

Daniel Chessel
Anne-Béatrice Dufour anne-beatrice.dufour@univ-lyon1.fr

References

Tenenhaus, M. & Young, F.W. (1985) An analysis and synthesis of multiple correspondence analysis, optimal scaling, dual scaling, homogeneity analysis ans other methods for quantifying categorical multivariate data. Psychometrika, 50, 1, 91-119.

Lebart, L., A. Morineau, and M. Piron. 1995. Statistique exploratoire multidimensionnelle. Dunod, Paris.

See Also

s.chull, s.class

Examples

Run this code
data(ours)
summary(ours)

if(adegraphicsLoaded()) {
  g1 <- s1d.boxplot(dudi.acm(ours, scan = FALSE)$li[, 1], ours)
} else {
  boxplot(dudi.acm(ours, scan = FALSE))
}
if (FALSE) {
data(banque)
banque.acm <- dudi.acm(banque, scann = FALSE, nf = 3)

if(adegraphicsLoaded()) {
  g2 <- adegraphics:::scatter.dudi(banque.acm)
} else {
  scatter(banque.acm)
}  

apply(banque.acm$cr, 2, mean)
banque.acm$eig[1:banque.acm$nf] # the same thing

if(adegraphicsLoaded()) {
  g3 <- s1d.boxplot(banque.acm$li[, 1], banque)
  g4 <- scatter(banque.acm)
} else {
  boxplot(banque.acm)
  scatter(banque.acm)
}


s.value(banque.acm$li, banque.acm$li[,3])

bb <- acm.burt(banque, banque)
bbcoa <- dudi.coa(bb, scann = FALSE)
plot(banque.acm$c1[,1], bbcoa$c1[,1])
# mca and coa of Burt table. Lebart & coll. section 1.4

bd <- acm.disjonctif(banque)
bdcoa <- dudi.coa(bd, scann = FALSE)
plot(banque.acm$li[,1], bdcoa$li[,1]) 
# mca and coa of disjonctive table. Lebart & coll. section 1.4
plot(banque.acm$co[,1], dudi.coa(bd, scann = FALSE)$co[,1]) 
}

Run the code above in your browser using DataLab