powered by
Functions and classes to manage outputs of bootstrap simulations for one (class randboot) or several (class krandboot) statistics
randboot
krandboot
as.krandboot(obs, boot, quantiles = c(0.025, 0.975), names = colnames(boot), call = match.call()) # S3 method for krandboot print(x, ...) as.randboot(obs, boot, quantiles = c(0.025, 0.975), call = match.call()) # S3 method for randboot print(x, ...) randboot(object, ...)
an object of class randboot or krandboot
a value (class randboot) or a vector (class krandboot) with observed statistics
a vector (class randboot) or a matrix (class krandboot) with the bootstrap values of the statistics
a vector indicating the lower and upper quantiles to compute
a vector of names for the statistics
the matching call
an object on which bootstrap should be perform
other arguments to be passed to methods
Stéphane Dray (stephane.dray@univ-lyon1.fr)
Carpenter, J. \& Bithell, J. (2000) Bootstrap confidence intervals: when, which, what? A practical guide for medical statisticians.Statistics in medicine, 19, 1141-1164
randboot.multiblock
## an example corresponding to 10 statistics and 100 repetitions bt <- as.krandboot(obs = rnorm(10), boot = matrix(rnorm(1000), nrow = 100)) bt if(adegraphicsLoaded()) plot(bt)
Run the code above in your browser using DataLab