powered by
performs the canonical graph of a Principal Component Analysis.
# S3 method for pca score(x, xax = 1, which.var = NULL, mfrow = NULL, csub = 2, sub = names(x$tab), abline = TRUE, ...)
an object of class pca
pca
the column number for the used axis
the numbers of the kept columns for the analysis, otherwise all columns
a vector of the form "c(nr,nc)", otherwise computed by a special own function n2mfrow
n2mfrow
a character size for sub-titles, used with par("cex")*csub
par("cex")*csub
a vector of string of characters to be inserted as sub-titles, otherwise the names of the variables
a logical value indicating whether a regression line should be added
further arguments passed to or from other methods
Daniel Chessel
data(deug) dd1 <- dudi.pca(deug$tab, scan = FALSE) score(dd1) # The correlations are : dd1$co[,1] # [1] 0.7925 0.6532 0.7410 0.5287 0.5539 0.7416 0.3336 0.2755 0.4172
Run the code above in your browser using DataLab