Learn R Programming

adegenet (version 2.0.0)

makefreq: Compute allelic frequencies

Description

The function makefreq is a generic to compute allele frequencies. These can be derived for genind or genpop objects. In the case of genind objects, data are kept at the individual level, but standardised so that allele frequencies sum up to 1.

Usage

makefreq(x, ...)

## S3 method for class 'genind': makefreq(x, quiet = FALSE, missing = NA, truenames = TRUE, ...)

## S3 method for class 'genpop': makefreq(x, quiet = FALSE, missing = NA, truenames = TRUE, ...)

Arguments

x
a genind or genpop object.
...
further arguments (curently unused)
quiet
logical stating whether a conversion message must be printed (TRUE,default) or not (FALSE).
missing
treatment for missing values. Can be NA, 0 or "mean" (see details)
truenames
deprecated; there for backward compatibility

Value

  • Returns a list with the following components:
  • tabmatrix of allelic frequencies (rows: populations; columns: alleles).
  • nobsnumber of observations (i.e. alleles) for each population x locus combinaison.
  • callthe matched call

Details

There are 3 treatments for missing values: - NA: kept as NA. - 0: missing values are considered as zero. Recommended for a PCA on compositionnal data. - "mean": missing values are given the mean frequency of the corresponding allele. Recommended for a centred PCA.

Note that this function is now a simple wrapper for the accessor tab.

See Also

genpop

Examples

Run this code
data(microbov)
obj1 <- microbov
obj2 <- genind2genpop(obj1)

# perform a correspondance analysis on counts data
Xcount <- tab(obj2, NA.method="zero")
ca1 <- dudi.coa(Xcount,scannf=FALSE)
s.label(ca1$li,sub="Correspondance Analysis",csub=1.2)
add.scatter.eig(ca1$eig,nf=2,xax=1,yax=2,posi="topleft")

# perform a principal component analysis on frequency data
Xfreq <- makefreq(obj2, missing="mean")
Xfreq <- tab(obj2, NA.method="mean") # equivalent to line above
pca1 <- dudi.pca(Xfreq,scale=FALSE,scannf=FALSE)
s.label(pca1$li,sub="Principal Component Analysis",csub=1.2)
add.scatter.eig(pca1$eig,nf=2,xax=1,yax=2,posi="top")

Run the code above in your browser using DataLab