Last chance! 50% off unlimited learning
Sale ends in
This function represents a set of distributions on a numeric score using a mean-standard deviation display
s1d.distri(score, dfdistri, labels = colnames(dfdistri), at = 1:NCOL(dfdistri),
yrank = TRUE, sdSize = 1, facets = NULL, plot = TRUE,
storeData = TRUE, add = FALSE, pos = -1, ...)
An object of class ADEg
(subclass S1.distri
) or ADEgS
(if add
is TRUE
and/or
if facets or data frame for score
are used).
The result is displayed if plot
is TRUE
.
a numeric vector (or a data frame) used to produce the plot
a data frame containing the mass distribution in which each column is a class
a logical to draw the distributions sorted by means ascending order
the labels' names drawn for each distribution
a numeric vector used as an index
a numeric for the size of the standard deviation segments
a factor splitting score
so that subsets
of the data are represented on different sub-graphics
a logical indicating if the graphics is displayed
a logical indicating if the data are stored in
the returned object. If FALSE
, only the names of the data
arguments are stored
a logical. If TRUE
, the graphic is superposed to the graphics
already plotted in the current device
an integer indicating the position of the
environment where the data are stored, relative to the environment
where the function is called. Useful only if storeData
is
FALSE
additional graphical parameters (see
adegpar
and trellis.par.get
)
Alice Julien-Laferriere, Aurelie Siberchicot aurelie.siberchicot@univ-lyon1.fr and Stephane Dray
Graphical parameters for rugs are available in plines
of adegpar
.
Some appropriated graphical parameters in p1d
are also available.
The weighted means and standard deviations of class are available in the object slot stats
using object@stats$means
and object@stats$sds
.
S1.distri
ADEg.S1
w <- seq(-1, 1, le = 200)
distri <- data.frame(lapply(1:50,
function(x) sample(200:1) * ((w >= (- x / 50)) & (w <= x / 50))))
names(distri) <- paste("w", 1:50, sep = "")
g11 <- s1d.distri(w, distri, yrank = TRUE, sdS = 1.5, plot = FALSE)
g12 <- s1d.distri(w, distri, yrank = FALSE, sdS = 1.5, plot = FALSE)
G1 <- ADEgS(c(g11, g12), layout = c(1, 2))
data(rpjdl, package = "ade4")
coa1 <- ade4::dudi.coa(rpjdl$fau, scannf = FALSE)
G2 <- s1d.distri(coa1$li[,1], rpjdl$fau, labels = rpjdl$frlab,
plabels = list(cex = 0.8, boxes = list(draw = FALSE)))
if (FALSE) {
g31 <- s1d.distri(coa1$l1[,1], rpjdl$fau, plabels = list(cex = 0.8, boxes = list(draw = FALSE)),
plot = FALSE)
nsc1 <- ade4::dudi.nsc(rpjdl$fau, scannf = FALSE)
g32 <- s1d.distri(nsc1$l1[,1], rpjdl$fau, plabels = list(cex = 0.8, boxes = list(draw = FALSE)),
plot = FALSE)
g33 <- s.label(coa1$l1, plot = FALSE)
g34 <- s.label(nsc1$l1, plot = FALSE)
G3 <- ADEgS(c(g31, g32, g33, g34), layout = c(2, 2))
}
Run the code above in your browser using DataLab