Learn R Programming

adehabitatHS (version 0.3.18)

niche.test: Monte-Carlo Test on Parameters of the Ecological Niche

Description

niche.test tests for the significance of two parameters of the ecological niche of a species (marginality and tolerance), using Monte-Carlo methods. This is a bivariate test.

Usage

niche.test(x, pts, nrep = 999, o.include = TRUE, ...)

Value

Returns a list containing the following components:

dfxy

a data frame with the randomized values of marginality (first column) and tolerance (second column).

obs

the actual value of marginality and tolerance.

Arguments

x

a raster map of class SpatialPixelsDataFrame

pts

an object inheriting the class SpatialPoints

nrep

the number of permutations

o.include

logical, passed to biv.test. If TRUE, the origin is included in the plot

...

further arguments passed to biv.test

Author

Mathieu Basille basille@ase-research.org
Clement Calenge clement.calenge@ofb.gouv.fr

Warning

biv.test uses the function kde2d of the package MASS.

Details

niche.test tests the significance of two parameters describing the ecological niche: the marginality (squared length of the vector linking the average available habitat conditions to the average used habitat conditions in the ecological space defined by the habitat variables), and the tolerance (inertia of the niche in the ecological space, i.e. the sum over all variables of the variance of used pixels).

At each step of the randomisation procedure, the test randomly allocates the n points in the pixels of the map. The marginality and the tolerance are then recomputed on this randomised data set.

Actual values are compared to random values with the help of the function biv.test.

See Also

biv.test for more details on bivariate tests. histniche for the histograms of the variables of the niche.

Examples

Run this code
if (FALSE) {
data(chamois)

niche <- niche.test(chamois$map,
                    chamois$locs,
                    side = "bottom")
names(niche)
}

Run the code above in your browser using DataLab