Learn R Programming

adespatial (version 0.0-7)

variogmultiv: Function to compute multivariate empirical variogram

Description

Compute a multivariate empirical variogram. It is strictly equivalent to summing univariate variograms

Usage

variogmultiv(Y, xy, dmin = 0, dmax = max(dist(xy)), nclass = 20)

Arguments

Y
A matrix with numeric data
xy
A matrix with coordinates of samples
dmin
The minimum distance value at which the variogram is computed (i.e. lower bound of the first class)
dmax
The maximum distance value at which the variogram is computed (i.e. higher bound of the last class)
nclass
Number of classes of distances

Value

A list: A list:

References

Wagner H. H. (2003) Spatial covariance in plant communities: integrating ordination, geostatistics, and variance testing. Ecology, 84, 1045--1057

Examples

Run this code

if(require(ade4)){
data(oribatid)
# Hellinger transformation
fau <- sqrt(oribatid$fau / outer(apply(oribatid$fau, 1, sum), rep(1, ncol(oribatid$fau)), "*"))
# Removing linear effect
faudt <- resid(lm(as.matrix(fau) ~ as.matrix(oribatid$xy))) 
mvspec <- variogmultiv(faudt, oribatid$xy, nclass = 20)
mvspec
plot(mvspec$d, mvspec$var,type = 'b', pch = 20, xlab = "Distance", ylab = "C(distance)")
}

Run the code above in your browser using DataLab