Learn R Programming

admiral (version 1.2.0)

derive_param_exposure: Add an Aggregated Parameter and Derive the Associated Start and End Dates

Description

Add a record computed from the aggregated analysis value of another parameter and compute the start (ASTDT(M))and end date (AENDT(M)) as the minimum and maximum date by by_vars.

Usage

derive_param_exposure(
  dataset = NULL,
  dataset_add,
  by_vars,
  input_code,
  filter_add = NULL,
  set_values_to = NULL
)

Value

The input dataset with a new record added for each group (as defined by by_vars parameter). That is, a variable will only be populated in this new record if it is specified in by_vars. For each new record,

  • set_values_to lists each specified variable and computes its value,

  • the variable(s) specified on the LHS of set_values_to are set to their paired value (RHS). In addition, the start and end date are computed as the minimum/maximum dates by by_vars.

If the input datasets contains

  • both AxxDTM and AxxDT then all ASTDTM,AENDTM, ASTDT, AENDT are computed

  • only AxxDTM then ASTDTM,AENDTM are computed

  • only AxxDT then ASTDT,AENDT are computed.

Arguments

dataset

Input dataset

The variables specified by the by_vars argument are expected to be in the dataset.

dataset_add

Additional dataset

The variables specified for by_vars, analysis_var, PARAMCD, alongside either ASTDTM and AENDTM or ASTDT and AENDT are also expected. Observations from the specified dataset are going to be used to calculate and added as new records to the input dataset (dataset).

by_vars

Grouping variables

For each group defined by by_vars an observation is added to the output dataset. Only variables specified in by_vars will be populated in the newly created records.

Permitted Values: list of variables created by exprs() e.g. exprs(USUBJID, VISIT)

input_code

Required parameter code

The observations where PARAMCD equals the specified value are considered to compute the summary record.

Permitted Values: A character of PARAMCD value

filter_add

Filter condition as logical expression to apply during summary calculation. By default, filtering expressions are computed within by_vars as this will help when an aggregating, lagging, or ranking function is involved.

For example,

  • filter_add = (AVAL > mean(AVAL, na.rm = TRUE)) will filter all AVAL values greater than mean of AVAL with in by_vars.

  • filter_add = (dplyr::n() > 2) will filter n count of by_vars greater than 2.

set_values_to

Variable-value pairs

Set a list of variables to some specified value for the new observation(s)

  • LHS refer to a variable. It is expected that at least PARAMCD is defined.

  • RHS refers to the values to set to the variable. This can be a string, a symbol, a numeric value, NA, or an expression. (e.g. exprs(PARAMCD = "TDOSE",PARCAT1 = "OVERALL")).

Permitted Values: List of variable-value pairs

Details

For each group (with respect to the variables specified for the by_vars parameter), an observation is added to the output dataset and the defined values are set to the defined variables

See Also

BDS-Findings Functions for adding Parameters/Records: default_qtc_paramcd(), derive_expected_records(), derive_extreme_event(), derive_extreme_records(), derive_locf_records(), derive_param_bmi(), derive_param_bsa(), derive_param_computed(), derive_param_doseint(), derive_param_exist_flag(), derive_param_framingham(), derive_param_map(), derive_param_qtc(), derive_param_rr(), derive_param_wbc_abs(), derive_summary_records()

Examples

Run this code
library(tibble)
library(dplyr, warn.conflicts = FALSE)
library(lubridate, warn.conflicts = FALSE)
library(stringr, warn.conflicts = FALSE)
adex <- tribble(
  ~USUBJID, ~PARAMCD, ~AVAL, ~AVALC, ~VISIT, ~ASTDT, ~AENDT,
  "1015", "DOSE", 80, NA_character_, "BASELINE", ymd("2014-01-02"), ymd("2014-01-16"),
  "1015", "DOSE", 85, NA_character_, "WEEK 2", ymd("2014-01-17"), ymd("2014-06-18"),
  "1015", "DOSE", 82, NA_character_, "WEEK 24", ymd("2014-06-19"), ymd("2014-07-02"),
  "1015", "ADJ", NA, NA_character_, "BASELINE", ymd("2014-01-02"), ymd("2014-01-16"),
  "1015", "ADJ", NA, NA_character_, "WEEK 2", ymd("2014-01-17"), ymd("2014-06-18"),
  "1015", "ADJ", NA, NA_character_, "WEEK 24", ymd("2014-06-19"), ymd("2014-07-02"),
  "1017", "DOSE", 80, NA_character_, "BASELINE", ymd("2014-01-05"), ymd("2014-01-19"),
  "1017", "DOSE", 50, NA_character_, "WEEK 2", ymd("2014-01-20"), ymd("2014-05-10"),
  "1017", "DOSE", 65, NA_character_, "WEEK 24", ymd("2014-05-10"), ymd("2014-07-02"),
  "1017", "ADJ", NA, NA_character_, "BASELINE", ymd("2014-01-05"), ymd("2014-01-19"),
  "1017", "ADJ", NA, "ADVERSE EVENT", "WEEK 2", ymd("2014-01-20"), ymd("2014-05-10"),
  "1017", "ADJ", NA, NA_character_, "WEEK 24", ymd("2014-05-10"), ymd("2014-07-02")
) %>%
  mutate(ASTDTM = ymd_hms(paste(ASTDT, "00:00:00")), AENDTM = ymd_hms(paste(AENDT, "00:00:00")))

# Cumulative dose
adex %>%
  derive_param_exposure(
    dataset_add = adex,
    by_vars = exprs(USUBJID),
    set_values_to = exprs(
      PARAMCD = "TDOSE",
      PARCAT1 = "OVERALL",
      AVAL = sum(AVAL, na.rm = TRUE)
    ),
    input_code = "DOSE"
  ) %>%
  select(-ASTDTM, -AENDTM)

# average dose in w2-24
adex %>%
  derive_param_exposure(
    dataset_add = adex,
    by_vars = exprs(USUBJID),
    filter_add = VISIT %in% c("WEEK 2", "WEEK 24"),
    set_values_to = exprs(
      PARAMCD = "AVDW224",
      PARCAT1 = "WEEK2-24",
      AVAL = mean(AVAL, na.rm = TRUE)
    ),
    input_code = "DOSE"
  ) %>%
  select(-ASTDTM, -AENDTM)

# Any dose adjustment?
adex %>%
  derive_param_exposure(
    dataset_add = adex,
    by_vars = exprs(USUBJID),
    set_values_to = exprs(
      PARAMCD = "TADJ",
      PARCAT1 = "OVERALL",
      AVALC = if_else(sum(!is.na(AVALC)) > 0, "Y", NA_character_)
    ),
    input_code = "ADJ"
  ) %>%
  select(-ASTDTM, -AENDTM)

Run the code above in your browser using DataLab