Learn R Programming

admiral (version 1.2.0)

derive_vars_computed: Adds Variable(s) Computed from the Analysis Value of one or more Parameters

Description

Adds Variable(s) computed from the analysis value of one or more parameters. It is expected that the value of the new variable is defined by an expression using the analysis values of other parameters, such as addition/sum, subtraction/difference, multiplication/product, division/ratio, exponentiation/logarithm, or by formula.

For example Body Mass Index at Baseline (BMIBL) in ADSL can be derived from of HEIGHT and WEIGHT parameters in ADVS.

Usage

derive_vars_computed(
  dataset,
  dataset_add,
  by_vars,
  parameters,
  new_vars,
  filter_add = NULL,
  constant_by_vars = NULL,
  constant_parameters = NULL
)

Value

The input dataset with the new variables added.

Arguments

dataset

The variables specified by the by_vars parameter are expected.

dataset_add

Additional dataset

The variables specified by the by_vars parameter are expected.

The variable specified by by_vars and PARAMCD must be a unique key of the additional dataset after restricting it by the filter condition (filter_add parameter) and to the parameters specified by parameters.

by_vars

Grouping variables

Grouping variables uniquely identifying a set of records for which new_vars are to be calculated.

Permitted Values: list of variables created by exprs()

parameters

Required parameter codes

It is expected that all parameter codes (PARAMCD) which are required to derive the new variable are specified for this parameter or the constant_parameters parameter.

If observations should be considered which do not have a parameter code, e.g., if an SDTM dataset is used, temporary parameter codes can be derived by specifying a list of expressions. The name of the element defines the temporary parameter code and the expression defines the condition for selecting the records. For example, parameters = exprs(HGHT = VSTESTCD == "HEIGHT") selects the observations with VSTESTCD == "HEIGHT" from the input data (dataset and dataset_add), sets PARAMCD = "HGHT" for these observations, and adds them to the observations to consider.

Unnamed elements in the list of expressions are considered as parameter codes. For example, parameters = exprs(WEIGHT, HGHT = VSTESTCD == "HEIGHT") uses the parameter code "WEIGHT" and creates a temporary parameter code "HGHT".

Permitted Values: A character vector of PARAMCD values or a list of expressions

new_vars

Name of the newly created variables

The specified variables are set to the specified values. The values of variables of the parameters specified by parameters can be accessed using <variable name>.<parameter code>. For example

exprs(
  BMIBL = (AVAL.WEIGHT / (AVAL.HEIGHT/100)^2)
)

defines the value for the new variable.

Variable names in the expression must not contain more than one dot.

Permitted Values: List of variable-value pairs

filter_add

Filter condition of additional dataset

The specified condition is applied to the additional dataset before deriving the new variable, i.e., only observations fulfilling the condition are taken into account.

Permitted Values: a condition

constant_by_vars

By variables for constant parameters

The constant parameters (parameters that are measured only once) are merged to the other parameters using the specified variables. (Refer to the Example)

Permitted Values: list of variables

constant_parameters

Required constant parameter codes

It is expected that all the parameter codes (PARAMCD) which are required to derive the new variable and are measured only once are specified here. For example if BMI should be derived and height is measured only once while weight is measured at each visit. Height could be specified in the constant_parameters parameter. (Refer to the Example)

If observations should be considered which do not have a parameter code, e.g., if an SDTM dataset is used, temporary parameter codes can be derived by specifying a list of expressions. The name of the element defines the temporary parameter code and the expression defines the condition for selecting the records. For example constant_parameters = exprs(HGHT = VSTESTCD == "HEIGHT") selects the observations with VSTESTCD == "HEIGHT" from the input data (dataset and dataset_add), sets PARAMCD = "HGHT" for these observations, and adds them to the observations to consider.

Unnamed elements in the list of expressions are considered as parameter codes. For example, constant_parameters = exprs(WEIGHT, HGHT = VSTESTCD == "HEIGHT") uses the parameter code "WEIGHT" and creates a temporary parameter code "HGHT".

Permitted Values: A character vector of PARAMCD values or a list of expressions

Details

For each group (with respect to the variables specified for the by_vars argument), the values of the new variables (new_vars) are computed based on the parameters in the additional dataset (dataset_add) and then the new variables are merged to the input dataset (dataset).

See Also

General Derivation Functions for all ADaMs that returns variable appended to dataset: derive_var_extreme_flag(), derive_var_joined_exist_flag(), derive_var_merged_ef_msrc(), derive_var_merged_exist_flag(), derive_var_merged_summary(), derive_var_obs_number(), derive_var_relative_flag(), derive_vars_cat(), derive_vars_joined(), derive_vars_merged(), derive_vars_merged_lookup(), derive_vars_transposed()

Examples

Run this code
library(tibble)
library(dplyr)

# Example 1: Derive BMIBL
adsl <- tribble(
  ~STUDYID,   ~USUBJID, ~AGE,   ~AGEU,
  "PILOT01", "01-1302",   61,   "YEARS",
  "PILOT01", "17-1344",   64,   "YEARS"
)

advs <- tribble(
  ~STUDYID,  ~USUBJID,  ~PARAMCD, ~PARAM,        ~VISIT,      ~AVAL, ~AVALU, ~ABLFL,
  "PILOT01", "01-1302", "HEIGHT", "Height (cm)", "SCREENING", 177.8, "cm",   "Y",
  "PILOT01", "01-1302", "WEIGHT", "Weight (kg)", "SCREENING", 81.19, "kg",   NA,
  "PILOT01", "01-1302", "WEIGHT", "Weight (kg)", "BASELINE",   82.1, "kg",   "Y",
  "PILOT01", "01-1302", "WEIGHT", "Weight (kg)", "WEEK 2",    81.19, "kg",   NA,
  "PILOT01", "01-1302", "WEIGHT", "Weight (kg)", "WEEK 4",    82.56, "kg",   NA,
  "PILOT01", "01-1302", "WEIGHT", "Weight (kg)", "WEEK 6",    80.74, "kg",   NA,
  "PILOT01", "17-1344", "HEIGHT", "Height (cm)", "SCREENING", 163.5, "cm",   "Y",
  "PILOT01", "17-1344", "WEIGHT", "Weight (kg)", "SCREENING", 58.06, "kg",   NA,
  "PILOT01", "17-1344", "WEIGHT", "Weight (kg)", "BASELINE",  58.06, "kg",   "Y",
  "PILOT01", "17-1344", "WEIGHT", "Weight (kg)", "WEEK 2",    58.97, "kg",   NA,
  "PILOT01", "17-1344", "WEIGHT", "Weight (kg)", "WEEK 4",    57.97, "kg",   NA,
  "PILOT01", "17-1344", "WEIGHT", "Weight (kg)", "WEEK 6",    58.97, "kg",   NA
)

derive_vars_computed(
  dataset = adsl,
  dataset_add = advs,
  by_vars = exprs(STUDYID, USUBJID),
  parameters = c("WEIGHT", "HEIGHT"),
  new_vars = exprs(BMIBL = compute_bmi(height = AVAL.HEIGHT, weight = AVAL.WEIGHT)),
  filter_add = ABLFL == "Y"
)

Run the code above in your browser using DataLab