# NOT RUN {
# create a dummy design
design <- TwoStageDesign(50, .0, 2.0, 50, 2.0, order = 5L)
# define type one error als IntegralScore
toer <- expected(ConditionalPower(Normal(), PointMassPrior(.0, 1)))
# evaluate
evaluate(toer, design)
# evaluate affine N1 score
aff_n1 <- N1() + 10
evaluate(
aff_n1,
OneStageDesign(50, 1.96)
) # 60
evaluate(
expected(ConditionalPower(Normal(), PointMassPrior(.0, 1))) <= 0.05,
OneStageDesign(50, 1.96)
) # -0.025
# define power at delta = 0.3 and type one error rate
pow <- expected(ConditionalPower(Normal(), PointMassPrior(.3, 1)))
toer <- expected(ConditionalPower(Normal(), PointMassPrior(.0, 1)))
# evaluate if power >= 0.8 and toer <= 0.025
evaluate(
subject_to(
pow >= 0.8,
toer <= 0.025
),
TwoStageDesign(50.0, 0.0, 2.0, rep(60.0, 5), seq(2.0, 0.0, length.out = 5))
)
# evaluate conditional power
evaluate(
ConditionalPower(Normal(), PointMassPrior(.3, 1)),
TwoStageDesign(50, .0, 2.0, 50, 2.0, order = 5L),
x1 = 1
)
# evaluate conditional sample size
evaluate(
ConditionalSampleSize(Normal(), PointMassPrior(.3, 1)),
TwoStageDesign(50, .0, 2.0, 50, 2.0, order = 5L),
x1 = 3
) # 50
evaluate(
AverageN2(),
TwoStageDesign(100, 0.5, 1.5, 60.0, 1.96, order = 5L)
) # 60
evaluate(
N1(),
TwoStageDesign(70, 0, 2, rep(60, 6), rep(1.7, 6))
) # 70
# }
Run the code above in your browser using DataLab