Learn R Programming

adoptr (version 1.1.1)

probability_density_function: Probability density function

Description

probability_density_function evaluates the probability density function of a specific distribution dist at a point x.

Usage

probability_density_function(dist, x, n, theta, ...)

# S4 method for Binomial,numeric,numeric,numeric probability_density_function(dist, x, n, theta, ...)

# S4 method for ChiSquared,numeric,numeric,numeric probability_density_function(dist, x, n, theta, ...)

# S4 method for NestedModels,numeric,numeric,numeric probability_density_function(dist, x, n, theta, ...)

# S4 method for Normal,numeric,numeric,numeric probability_density_function(dist, x, n, theta, ...)

# S4 method for Student,numeric,numeric,numeric probability_density_function(dist, x, n, theta, ...)

# S4 method for Survival,numeric,numeric,numeric probability_density_function(dist, x, n, theta, ...)

Value

value of the probability density function at point x.

Arguments

dist

a univariate distribution object

x

outcome

n

sample size

theta

distribution parameter

...

further optional arguments

Details

If the distribution is Binomial, theta denotes the rate difference between intervention and control group. Then, the mean is assumed to be √ n theta.

If the distribution is Normal, then the mean is assumed to be √ n theta.

Examples

Run this code
probability_density_function(Binomial(.2, FALSE), 1, 50, .3)

probability_density_function(Pearson2xK(3), 1, 30, get_tau_Pearson2xK(c(0.3, 0.4, 0.7, 0.2)))
probability_density_function(ZSquared(TRUE), 1, 35, get_tau_ZSquared(0.4, 1))


probability_density_function(ANOVA(3), 1, 30, get_tau_ANOVA(c(0.3, 0.4, 0.7, 0.2)))

probability_density_function(Normal(), 1, 50, .3)

probability_density_function(Student(TRUE), 1, 40, 1.1)

probability_density_function(Survival(0.6,TRUE),0.75,50,0.9)

Run the code above in your browser using DataLab