# NOT RUN {
##################################
## Simple Examples (from MEMSS) ##
##################################
if (requireNamespace("MEMSS")) {
data("Machines", package = "MEMSS")
# simple model with random-slopes for repeated-measures factor
m1 <- mixed(score ~ Machine + (Machine|Worker), data=Machines)
m1
# suppress correlations among random effect parameters with || and expand_re = TRUE
m2 <- mixed(score ~ Machine + (Machine||Worker), data=Machines, expand_re = TRUE)
m2
## compare:
summary(m1)$varcor
summary(m2)$varcor
# for wrong solution see:
# summary(lmer(score ~ Machine + (Machine||Worker), data=Machines))$varcor
if (requireNamespace("emmeans")) {
# follow-up tests
library("emmeans") # package emmeans needs to be attached for follow-up tests.
(emm1 <- emmeans(m1, "Machine"))
pairs(emm1, adjust = "holm") # all pairwise comparisons
con1 <- list(
c1 = c(1, -0.5, -0.5), # 1 versus other 2
c2 = c(0.5, -1, 0.5) # 1 and 3 versus 2
)
contrast(emm1, con1, adjust = "holm")
if (requireNamespace("ggplot2")) {
# plotting
afex_plot(m1, "Machine") ## default uses model-based CIs
## within-subjects CIs somewhat more in line with pairwirse comparisons:
afex_plot(m1, "Machine", error = "within")
## less differences between CIs for model without correlations:
afex_plot(m2, "Machine")
afex_plot(m2, "Machine", error = "within")
}}}
# }
# NOT RUN {
#######################
### Further Options ###
#######################
## Multicore:
require(parallel)
(nc <- detectCores()) # number of cores
cl <- makeCluster(rep("localhost", nc)) # make cluster
# to keep track of what the function is doindg redirect output to outfile:
# cl <- makeCluster(rep("localhost", nc), outfile = "cl.log.txt")
data("Machines", package = "MEMSS")
## There are two ways to use multicore:
# 1. Obtain fits with multicore (e.g. for likelihood ratio tests, LRT):
mixed(score ~ Machine + (Machine|Worker), data=Machines, cl = cl,
method = "LRT")
# 2. Obtain PB samples via multicore:
mixed(score ~ Machine + (Machine|Worker), data=Machines,
method = "PB", args_test = list(nsim = 50, cl = cl)) # better use 500 or 1000
## Both ways can be combined:
# 2. Obtain PB samples via multicore:
mixed(score ~ Machine + (Machine|Worker), data=Machines, cl = cl,
method = "PB", args_test = list(nsim = 50, cl = cl))
#### use all_fit = TRUE and expand_re = TRUE:
data("sk2011.2") # data described in more detail below
sk2_aff <- droplevels(sk2011.2[sk2011.2$what == "affirmation",])
require(optimx) # uses two more algorithms
sk2_aff_b <- mixed(response ~ instruction*type+(inference*type||id), sk2_aff,
expand_re = TRUE, all_fit = TRUE, method = "LRT")
attr(sk2_aff_b, "all_fit_selected")
attr(sk2_aff_b, "all_fit_logLik")
# considerably faster with multicore:
clusterEvalQ(cl, library(optimx)) # need to load optimx in cluster
sk2_aff_b2 <- mixed(response ~ instruction*type+(inference*type||id), sk2_aff,
expand_re = TRUE, all_fit = TRUE, cl=cl, method = "LRT")
attr(sk2_aff_b2, "all_fit_selected")
attr(sk2_aff_b2, "all_fit_logLik")
stopCluster(cl)
# }
# NOT RUN {
###################################################
## Replicating Maxwell & Delaney (2004) Examples ##
###################################################
# }
# NOT RUN {
### replicate results from Table 15.4 (Maxwell & Delaney, 2004, p. 789)
data(md_15.1)
# random intercept plus random slope
(t15.4a <- mixed(iq ~ timecat + (1+time|id),data=md_15.1))
# to also replicate exact parameters use treatment.contrasts and the last level as base level:
contrasts(md_15.1$timecat) <- contr.treatment(4, base = 4)
(t15.4b <- mixed(iq ~ timecat + (1+time|id),data=md_15.1, check_contrasts=FALSE))
summary(t15.4a) # gives "wrong" parameters extimates
summary(t15.4b) # identical parameters estimates
# for more examples from chapter 15 see ?md_15.1
### replicate results from Table 16.3 (Maxwell & Delaney, 2004, p. 837)
data(md_16.1)
# original results need treatment contrasts:
(mixed1_orig <- mixed(severity ~ sex + (1|id), md_16.1, check_contrasts=FALSE))
summary(mixed1_orig$full_model)
# p-value stays the same with afex default contrasts (contr.sum),
# but estimates and t-values for the fixed effects parameters change.
(mixed1 <- mixed(severity ~ sex + (1|id), md_16.1))
summary(mixed1$full_model)
# data for next examples (Maxwell & Delaney, Table 16.4)
data(md_16.4)
str(md_16.4)
### replicate results from Table 16.6 (Maxwell & Delaney, 2004, p. 845)
# Note that (1|room:cond) is needed because room is nested within cond.
# p-value (almost) holds.
(mixed2 <- mixed(induct ~ cond + (1|room:cond), md_16.4))
# (differences are dut to the use of Kenward-Roger approximation here,
# whereas M&W's p-values are based on uncorrected df.)
# again, to obtain identical parameter and t-values, use treatment contrasts:
summary(mixed2) # not identical
# prepare new data.frame with contrasts:
md_16.4b <- within(md_16.4, cond <- C(cond, contr.treatment, base = 2))
str(md_16.4b)
# p-value stays identical:
(mixed2_orig <- mixed(induct ~ cond + (1|room:cond), md_16.4b,
check_contrasts=FALSE))
summary(mixed2_orig$full_model) # replicates parameters
### replicate results from Table 16.7 (Maxwell & Delaney, 2004, p. 851)
# F-values (almost) hold, p-values (especially for skill) are off
(mixed3 <- mixed(induct ~ cond + skill + (1|room:cond), md_16.4))
# however, parameters are perfectly recovered when using the original contrasts:
mixed3_orig <- mixed(induct ~ cond + skill + (1|room:cond), md_16.4b,
check_contrasts=FALSE)
summary(mixed3_orig)
### replicate results from Table 16.10 (Maxwell & Delaney, 2004, p. 862)
# for this we need to center cog:
md_16.4b$cog <- scale(md_16.4b$cog, scale=FALSE)
# F-values and p-values are relatively off:
(mixed4 <- mixed(induct ~ cond*cog + (cog|room:cond), md_16.4b))
# contrast has a relatively important influence on cog
(mixed4_orig <- mixed(induct ~ cond*cog + (cog|room:cond), md_16.4b,
check_contrasts=FALSE))
# parameters are again almost perfectly recovered:
summary(mixed4_orig)
# }
# NOT RUN {
###########################
## Full Analysis Example ##
###########################
# }
# NOT RUN {
### split-plot experiment (Singmann & Klauer, 2011, Exp. 2)
## between-factor: instruction
## within-factor: inference & type
## hypothesis: three-way interaction
data("sk2011.2")
# use only affirmation problems (S&K also splitted the data like this)
sk2_aff <- droplevels(sk2011.2[sk2011.2$what == "affirmation",])
# set up model with maximal by-participant random slopes
sk_m1 <- mixed(response ~ instruction*inference*type+(inference*type|id), sk2_aff)
sk_m1 # prints ANOVA table with nicely rounded numbers (i.e., as characters)
nice(sk_m1) # returns the same but without printing potential warnings
anova(sk_m1) # returns and prints numeric ANOVA table (i.e., not-rounded)
summary(sk_m1) # lmer summary of full model
# same model but using Kenward-Roger approximation of df
# very similar results but slower
sk_m1b <- mixed(response ~ instruction*inference*type+(inference*type|id),
sk2_aff, method="KR")
nice(sk_m1b)
# identical results as:
anova(sk_m1$full_model)
# suppressing correlation among random slopes: very similar results, but
# significantly faster and often less convergence warnings.
sk_m2 <- mixed(response ~ instruction*inference*type+(inference*type||id), sk2_aff,
expand_re = TRUE)
sk_m2
## mixed objects can be passed to emmeans
library("emmeans") # however, package emmeans needs to be attached first
# emmeans also approximate df which takes time with default Kenward-Roger
emm_options(lmer.df = "Kenward-Roger") # default setting, slow
emm_options(lmer.df = "Satterthwaite") # faster setting, preferrable
emm_options(lmer.df = "asymptotic") # the fastest, df = infinity
# recreates basically Figure 4 (S&K, 2011, upper panel)
# only the 4th and 6th x-axis position are flipped
afex_plot(sk_m1, x = c("type", "inference"), trace = "instruction")
# set up reference grid for custom contrasts:
(rg1 <- emmeans(sk_m1, c("instruction", "type", "inference")))
# set up contrasts on reference grid:
contr_sk2 <- list(
ded_validity_effect = c(rep(0, 4), 1, rep(0, 5), -1, 0),
ind_validity_effect = c(rep(0, 5), 1, rep(0, 5), -1),
counter_MP = c(rep(0, 4), 1, -1, rep(0, 6)),
counter_AC = c(rep(0, 10), 1, -1)
)
# test the main double dissociation (see S&K, p. 268)
contrast(rg1, contr_sk2, adjust = "holm")
# all effects are significant.
# }
# NOT RUN {
####################
## Other Examples ##
####################
# }
# NOT RUN {
# use the obk.long data (not reasonable, no random slopes)
data(obk.long)
mixed(value ~ treatment * phase + (1|id), obk.long)
# Examples for using the per.parameter argument
# note, require method = "nested-KR", "LRT", or "PB"
# also we use custom contrasts
data(obk.long, package = "afex")
obk.long$hour <- ordered(obk.long$hour)
contrasts(obk.long$phase) <- "contr.sum"
contrasts(obk.long$treatment) <- "contr.sum"
# tests only the main effect parameters of hour individually per parameter.
mixed(value ~ treatment*phase*hour +(1|id), per_parameter = "^hour$",
data = obk.long, method = "nested-KR", check_contrasts = FALSE)
# tests all parameters including hour individually
mixed(value ~ treatment*phase*hour +(1|id), per_parameter = "hour",
data = obk.long, method = "nested-KR", check_contrasts = FALSE)
# tests all parameters individually
mixed(value ~ treatment*phase*hour +(1|id), per_parameter = ".",
data = obk.long, method = "nested-KR", check_contrasts = FALSE)
# example data from package languageR: Lexical decision latencies elicited from
# 21 subjects for 79 English concrete nouns, with variables linked to subject or
# word.
data(lexdec, package = "languageR")
# using the simplest model
m1 <- mixed(RT ~ Correct + Trial + PrevType * meanWeight +
Frequency + NativeLanguage * Length + (1|Subject) + (1|Word), data = lexdec)
m1
# Mixed Model Anova Table (Type 3 tests, S-method)
#
# Model: RT ~ Correct + Trial + PrevType * meanWeight + Frequency + NativeLanguage *
# Model: Length + (1 | Subject) + (1 | Word)
# Data: lexdec
# Effect df F p.value
# 1 Correct 1, 1627.67 8.16 ** .004
# 2 Trial 1, 1591.92 7.58 ** .006
# 3 PrevType 1, 1605.05 0.17 .680
# 4 meanWeight 1, 74.37 14.85 *** <.001
# 5 Frequency 1, 75.06 56.54 *** <.001
# 6 NativeLanguage 1, 27.12 0.70 .412
# 7 Length 1, 74.80 8.70 ** .004
# 8 PrevType:meanWeight 1, 1600.79 6.19 * .013
# 9 NativeLanguage:Length 1, 1554.49 14.24 *** <.001
# ---
# Signif. codes: 0 <U+2018>***<U+2019> 0.001 <U+2018>**<U+2019> 0.01 <U+2018>*<U+2019> 0.05 <U+2018>+<U+2019> 0.1 <U+2018> <U+2019> 1
# Fitting a GLMM using parametric bootstrap:
require("mlmRev") # for the data, see ?Contraception
gm1 <- mixed(use ~ age + I(age^2) + urban + livch + (1 | district), method = "PB",
family = binomial, data = Contraception, args_test = list(nsim = 10))
## note that nsim = 10 is way too low for all real examples!
# }
# NOT RUN {
# }
# NOT RUN {
#####################################
## Interplay with effects packages ##
#####################################
data("Machines", package = "MEMSS")
# simple model with random-slopes for repeated-measures factor
m1 <- mixed(score ~ Machine + (Machine|Worker), data=Machines,
set_data_arg = TRUE) ## necessary for it to work!
library("effects")
Effect("Machine", m1$full_model) # not correct:
# Machine effect
# Machine
# A B C
# 59.65000 52.35556 60.32222
# compare:
emmeans::emmeans(m1, "Machine")
# Machine emmean SE df asymp.LCL asymp.UCL
# A 52.35556 1.680711 Inf 49.06142 55.64969
# B 60.32222 3.528546 Inf 53.40640 67.23804
# C 66.27222 1.806273 Inf 62.73199 69.81245
## necessary to set contr.sum globally:
set_sum_contrasts()
Effect("Machine", m1$full_model)
# Machine effect
# Machine
# A B C
# 52.35556 60.32222 66.27222
plot(Effect("Machine", m1$full_model))
# }
Run the code above in your browser using DataLab