normalize.ExpressionSet.quantiles(eset, transfn=c("none","log","antilog"))
normalize.ExpressionSet.loess(eset, transfn=c("none","log","antilog"),...)
normalize.ExpressionSet.contrasts(eset, span = 2/3,
choose.subset=TRUE, subset.size=5000, verbose=TRUE, family="symmetric",
transfn=c("none","log","antilog"))
normalize.ExpressionSet.qspline(eset, transfn=c("none","log","antilog"),...)
normalize.ExpressionSet.invariantset(eset,prd.td=c(0.003, 0.007),
verbose=FALSE, transfn=c("none","log","antilog"),
baseline.type=c("mean","median","pseudo-mean","pseudo-median"))
normalize.ExpressionSet.scaling(eset, trim=0.02, baseline=-1,
transfn=c("none","log","antilog"))
loess
.loess
.ExpressionSet
. Typing normalize.ExpressionSet.methods
should give you a list of
methods that you may use. note that you can also use the
normalize
function on ExpressionSets. Use method
to select the
normalization method.
if (require(affydata)) {
data(Dilution)
eset <- rma(Dilution, normalize=FALSE, background=FALSE)
normalize(eset)
}
Run the code above in your browser using DataLab