Given a sequence of \(n\) non-negative numbers \(x=(x_1,\dots,x_n)\), where \(x_i \ge x_j \ge 0\) for \(i \le j\), the \(w\)-index (Woeginger, 2008) for \(x\) is defined as $$W(x)=\max\{i=1,\dots,n: x_{j}\ge i-j+1, \forall j=1,\dots,i\}$$
index_w(x)
a single numeric value
a non-negative numeric vector
If a non-increasingly sorted vector is given, the function has O(n) run-time.
See index_rp
for a natural generalization.
Woeginger G. J., An axiomatic characterization of the Hirsch-index. Mathematical Social Sciences 56(2), 2008, pp. 224-232.
Other impact_functions:
index_g()
,
index_h()
,
index_lp()
,
index_maxprod()
,
index_rp()
,
pord_weakdom()