A binary relation \(R\) is asymmetric, iff for all \(x, y\) we have \(xRy\) \(\Rightarrow\) \(\neg yRx\).
rel_is_asymmetric(R)
rel_is_asymmetric
returns
a single logical value.
an object coercible to a 0-1 (logical) square matrix, representing a binary relation on a finite set.
Note that an asymmetric relation is necessarily irreflexive,
compare rel_is_irreflexive
.
rel_is_asymmetric
finds out if a given binary relation
is asymmetric. Missing values in R
may result in NA
.
Also, check out rel_closure_symmetric
for the symmetric closure of R
.
Other binary_relations:
check_comonotonicity()
,
pord_nd()
,
pord_spread()
,
pord_weakdom()
,
rel_graph()
,
rel_is_antisymmetric()
,
rel_is_cyclic()
,
rel_is_irreflexive()
,
rel_is_reflexive()
,
rel_is_symmetric()
,
rel_is_total()
,
rel_is_transitive()
,
rel_reduction_hasse()