A binary relation \(R\) is irreflexive (or antireflexive), iff for all \(x\) we have \(\neg xRx\).
rel_is_irreflexive(R)
rel_is_irreflexive
returns
a single logical value.
an object coercible to a 0-1 (logical) square matrix, representing a binary relation on a finite set.
rel_is_irreflexive
finds out if a given binary relation
is irreflexive. The function just checks whether all elements
on the diagonal of R
are zeros,
i.e., it has \(O(n)\) time complexity,
where \(n\) is the number of rows in R
.
Missing values on the diagonal may result in NA
.
When dealing with a graph's loops,
i.e., elements related to themselves, you may be interested
in finding a reflexive closure,
see rel_closure_reflexive
,
or a reflexive reduction,
see rel_reduction_reflexive
.
Other binary_relations:
check_comonotonicity()
,
pord_nd()
,
pord_spread()
,
pord_weakdom()
,
rel_graph()
,
rel_is_antisymmetric()
,
rel_is_asymmetric()
,
rel_is_cyclic()
,
rel_is_reflexive()
,
rel_is_symmetric()
,
rel_is_total()
,
rel_is_transitive()
,
rel_reduction_hasse()