A binary relation \(R\) is symmetric, iff for all \(x, y\) we have \(xRy\) \(\Rightarrow\) \(yRx\).
rel_is_symmetric(R)rel_closure_symmetric(R)
The rel_closure_symmetric
function
returns a logical square matrix. dimnames
of R
are preserved.
On the other hand, rel_is_symmetric
returns
a single logical value.
an object coercible to a 0-1 (logical) square matrix, representing a binary relation on a finite set.
rel_is_symmetric
finds out if a given binary relation
is symmetric. Any missing value behind the diagonal results in NA
.
The symmetric closure of a binary relation \(R\),
determined by rel_closure_symmetric
,
is the smallest symmetric binary relation that contains \(R\).
Here, any missing values in R
result in an error.
Other binary_relations:
check_comonotonicity()
,
pord_nd()
,
pord_spread()
,
pord_weakdom()
,
rel_graph()
,
rel_is_antisymmetric()
,
rel_is_asymmetric()
,
rel_is_cyclic()
,
rel_is_irreflexive()
,
rel_is_reflexive()
,
rel_is_total()
,
rel_is_transitive()
,
rel_reduction_hasse()