A binary relation \(R\) is symmetric, iff for all \(x, y\) we have \(xRy\) \(\Rightarrow\) \(yRx\).
rel_is_symmetric(R)rel_closure_symmetric(R)
The rel_closure_symmetric function
returns a logical square matrix. dimnames
of R are preserved.
On the other hand, rel_is_symmetric returns
a single logical value.
an object coercible to a 0-1 (logical) square matrix, representing a binary relation on a finite set.
rel_is_symmetric finds out if a given binary relation
is symmetric. Any missing value behind the diagonal results in NA.
The symmetric closure of a binary relation \(R\),
determined by rel_closure_symmetric,
is the smallest symmetric binary relation that contains \(R\).
Here, any missing values in R result in an error.
Other binary_relations:
check_comonotonicity(),
pord_nd(),
pord_spread(),
pord_weakdom(),
rel_graph(),
rel_is_antisymmetric(),
rel_is_asymmetric(),
rel_is_cyclic(),
rel_is_irreflexive(),
rel_is_reflexive(),
rel_is_total(),
rel_is_transitive(),
rel_reduction_hasse()