Learn R Programming

agricolae (version 1.3-7)

BIB.test: Finding the Variance Analysis of the Balanced Incomplete Block Design

Description

Analysis of variance BIB and comparison mean adjusted.

Usage

BIB.test(block, trt, y, test = c("lsd","tukey","duncan","waller","snk"), 
alpha = 0.05, group = TRUE,console=FALSE)

Value

parameters

Design parameters

statistics

Statistics of the model

comparison

Comparison between treatments

means

Adjusted mean and statistics summary

groups

Grouping of treatments

Arguments

block

blocks

trt

Treatment

y

Response

test

Comparison treatments

alpha

Significant test

group

logical

console

logical, print output

Author

F. de Mendiburu

Details

Test of comparison treatment. lsd: Least significant difference. tukey: Honestly significant differente. duncan: Duncan's new multiple range test waller: Waller-Duncan test. snk: Student-Newman-Keuls (SNK)

References

Design of Experiments. Robert O. Kuehl. 2nd ed., Duxbury, 2000 Linear Estimation and Design of Experiments. D.D. Joshi. WILEY EASTERN LIMITED 1987, New Delhi, India. Introduction to experimental statistics. Ching Chun Li McGraw - Hill Book Company, Inc. New York. 1964

See Also

DAU.test, duncan.test, durbin.test, friedman, HSD.test, kruskal, LSD.test, Median.test, PBIB.test, REGW.test, scheffe.test, SNK.test, waerden.test, waller.test, plot.group

Examples

Run this code
library(agricolae)
# Example Design of Experiments. Robert O. Kuehl. 2da. Edicion. 2001
run<-gl(10,3)
psi<-c(250,325,475,250,475,550,325,400,550,400,475,550,325,475,550,
250,400,475,250,325,400,250,400,550,250,325,550,325,400,475)
monovinyl<-c(16,18,32,19,46,45,26,39,61,21,35,55,19,47,48,20,33,31,13,13,34,21,
 30,52,24,10,50,24,31,37)
out<-BIB.test(run,psi,monovinyl,test="waller",group=FALSE)
print(out)
bar.err(out$means,variation="range",ylim=c(0,60),bar=FALSE,col=0)
out<-BIB.test(run,psi,monovinyl,test="waller",group=TRUE)
out<-BIB.test(run,psi,monovinyl,test="tukey",group=TRUE,console=TRUE)
out<-BIB.test(run,psi,monovinyl,test="tukey",group=FALSE,console=TRUE)
rm(run,psi,monovinyl,out)
# Example linear estimation and design of experiments. D.D. Joshi. 1987
# Professor of Statistics, Institute of Social Sciences Agra, India
# 6 varieties of wheat crop in a BIB whit 10 blocks of 3 plots each.
y <-c(69,77,72,63,70,54,65,65,57,59,50,45,68,75,59,38,60,60,62,
 55,54,65,62,65,61,39,54,67,63,56)
varieties<-gl(6,5)
block <- c(1,2,3,4,5,1,2,6,7,8,1,3,6,9,10,2,4,7,9,10,3,5,7,8,9,4,5,6,8,10)
BIB.test(block, varieties, y)
# Example Introduction to experimental statistics. Ching Chun Li. 1964
# pag. 395 table. 27.2
# 7 trt, k=3 and b=7.
y <-c(10,15,11,4,12,15,5,14,10,14,19,19,8,10,17,6,11,12,5,14,21)
block<-gl(7,3)
trt <- c(1,2,4,2,3,5,3,4,6,4,5,7,1,5,6,2,6,7,1,3,7)
out<-BIB.test(block, trt, y, test="duncan")
bar.group(out$groups,col="blue",density=4,ylim=c(0,max(y)))
rm(y,block,trt,out)

Run the code above in your browser using DataLab