library(agricolae)
# Example Design of Experiments. Robert O. Kuehl. 2da. Edicion. 2001
run<-gl(10,3)
psi<-c(250,325,475,250,475,550,325,400,550,400,475,550,325,475,550,
250,400,475,250,325,400,250,400,550,250,325,550,325,400,475)
monovinyl<-c(16,18,32,19,46,45,26,39,61,21,35,55,19,47,48,20,33,31,13,13,34,21,
30,52,24,10,50,24,31,37)
out<-BIB.test(run,psi,monovinyl,test="waller",group=FALSE)
print(out)
bar.err(out$means,variation="range",ylim=c(0,60),bar=FALSE,col=0)
out<-BIB.test(run,psi,monovinyl,test="waller",group=TRUE)
out<-BIB.test(run,psi,monovinyl,test="tukey",group=TRUE,console=TRUE)
out<-BIB.test(run,psi,monovinyl,test="tukey",group=FALSE,console=TRUE)
rm(run,psi,monovinyl,out)
# Example linear estimation and design of experiments. D.D. Joshi. 1987
# Professor of Statistics, Institute of Social Sciences Agra, India
# 6 varieties of wheat crop in a BIB whit 10 blocks of 3 plots each.
y <-c(69,77,72,63,70,54,65,65,57,59,50,45,68,75,59,38,60,60,62,
55,54,65,62,65,61,39,54,67,63,56)
varieties<-gl(6,5)
block <- c(1,2,3,4,5,1,2,6,7,8,1,3,6,9,10,2,4,7,9,10,3,5,7,8,9,4,5,6,8,10)
BIB.test(block, varieties, y)
# Example Introduction to experimental statistics. Ching Chun Li. 1964
# pag. 395 table. 27.2
# 7 trt, k=3 and b=7.
y <-c(10,15,11,4,12,15,5,14,10,14,19,19,8,10,17,6,11,12,5,14,21)
block<-gl(7,3)
trt <- c(1,2,4,2,3,5,3,4,6,4,5,7,1,5,6,2,6,7,1,3,7)
out<-BIB.test(block, trt, y, test="duncan")
bar.group(out$groups,col="blue",density=4,ylim=c(0,max(y)))
rm(y,block,trt,out)
Run the code above in your browser using DataLab