Learn R Programming

agricolae (version 1.3-7)

LSD.test: Multiple comparisons, "Least significant difference" and Adjust P-values

Description

Multiple comparisons of treatments by means of LSD and a grouping of treatments. The level by alpha default is 0.05. Returns p-values adjusted using one of several methods

Usage

LSD.test(y, trt, DFerror, MSerror, alpha = 0.05, p.adj=c("none","holm","hommel", 
"hochberg", "bonferroni", "BH", "BY", "fdr"), group=TRUE, main = NULL,console=FALSE)

Value

statistics

Statistics of the model

parameters

Design parameters

means

Statistical summary of the study variable

comparison

Comparison between treatments

groups

Formation of treatment groups

Arguments

y

model(aov or lm) or answer of the experimental unit

trt

Constant( only y=model) or vector treatment applied to each experimental unit

DFerror

Degrees of freedom of the experimental error

MSerror

Means square error of the experimental

alpha

Level of risk for the test

p.adj

Method for adjusting p values (see p.adjust)

group

TRUE or FALSE

main

title of the study

console

logical, print output

Author

Felipe de Mendiburu

Details

For equal or different repetition.
For the adjustment methods, see the function p.adjusted.
p-adj ="none" is t-student.

It is necessary first makes a analysis of variance.
if model=y, then to apply the instruction:
LSD.test(model, "trt", alpha = 0.05, p.adj=c("none","holm","hommel", "hochberg", "bonferroni", "BH", "BY", "fdr"), group=TRUE, main = NULL,console=FALSE)
where the model class is aov or lm.

References

Steel, R.; Torri,J; Dickey, D.(1997) Principles and Procedures of Statistics A Biometrical Approach. pp178.

See Also

BIB.test, DAU.test, duncan.test, durbin.test, friedman, HSD.test, kruskal, Median.test, PBIB.test, REGW.test, scheffe.test, SNK.test, waerden.test, waller.test, plot.group

Examples

Run this code
library(agricolae)
data(sweetpotato)
model<-aov(yield~virus, data=sweetpotato)
out <- LSD.test(model,"virus", p.adj="bonferroni")
#stargraph
# Variation range: max and min
plot(out)
#endgraph
# Old version LSD.test()
df<-df.residual(model)
MSerror<-deviance(model)/df
out <- with(sweetpotato,LSD.test(yield,virus,df,MSerror))
#stargraph
# Variation interquartil range: Q75 and Q25
plot(out,variation="IQR")
#endgraph
out<-LSD.test(model,"virus",p.adj="hommel",console=TRUE)
plot(out,variation="SD") # variation standard deviation

Run the code above in your browser using DataLab