Learn R Programming

agricolae (version 1.3-7)

ssp.plot: Split-split-Plot analysis

Description

The variance analysis of a split-split plot design is divided into three parts: the main-plot, subplot and sub-subplot analysis.

Usage

ssp.plot(block, pplot, splot, ssplot, Y)

Value

ANOVA: Splip Split plot analysis

Arguments

block

replications

pplot

Factor main plot

splot

Factor subplot

ssplot

Factor sub-subplot

Y

Variable, response

Author

Felipe de Mendiburu

Details

The split-split-plot design is an extension of the split-plot design to accommodate a third factor: one factor in main-plot, other in subplot and the third factor in sub-subplot. The model is mixed, the blocks are random and the study factors are fixed applied according to the design.

References

Statistical procedures for agricultural research. Kwanchai A. Gomez, Arturo A. Gomez. Second Edition. 1984.

See Also

sp.plot, strip.plot, design.split, design.strip

Examples

Run this code
# Statistical procedures for agricultural research, pag 143
# Grain Yields of Three Rice Varieties Grown under 
#Three Management practices and Five Nitrogen levels; in a
#split-split-plot design with nitrogen as main-plot, 
#management practice as subplot, and variety as sub-subplot 
#factores, with three replications.
library(agricolae)
f <- system.file("external/ssp.csv", package="agricolae")
ssp<-read.csv(f)
model<-with(ssp,ssp.plot(block,nitrogen,management,variety,yield))
gla<-model$gl.a; glb<-model$gl.b; glc<-model$gl.c
Ea<-model$Ea; Eb<-model$Eb; Ec<-model$Ec
op<-par(mfrow=c(1,3),cex=0.6)
out1<-with(ssp,LSD.test(yield,nitrogen,gla,Ea,console=TRUE))
out2<-with(ssp,LSD.test(yield,management,glb,Eb,console=TRUE))
out3<-with(ssp,LSD.test(yield,variety,glc,Ec,console=TRUE))
plot(out1,xlab="Nitrogen",las=1,variation="IQR")
plot(out2,xlab="Management",variation="IQR")
plot(out3,xlab="Variety",variation="IQR")
# with aov
ssp$block<-factor(ssp$block)
ssp$nitrogen<-factor(ssp$nitrogen)
ssp$management<-factor(ssp$management)
ssp$variety<-factor(ssp$variety)
AOV<-aov(yield ~  block + nitrogen*management*variety + Error(block/nitrogen/management),data=ssp)
summary(AOV)
par(op)

Run the code above in your browser using DataLab