Learn R Programming

agricolae (version 1.3-7)

strip.plot: Strip-Plot analysis

Description

The variance analysis of a strip-plot design is divided into three parts: the horizontal-factor analysis, the vertical-factor analysis, and the interaction analysis.

Usage

strip.plot(BLOCK, COL, ROW, Y)

Value

Data and analysis of the variance of the strip plot design.

Arguments

BLOCK

replications

COL

Factor column

ROW

Factor row

Y

Variable, response

Author

Felipe de Mendiburu

Details

The strip-plot design is specifically suited for a two-factor experiment in which the desired precision for measuring the interaction effects between the two factors is higher than that for measuring the main efect two factors

References

Statistical procedures for agricultural research. Kwanchai A. Gomez, Arturo A. Gomez. Second Edition. 1984.

See Also

ssp.plot, sp.plot, design.split, design.strip

Examples

Run this code
# Yield
library(agricolae)
data(huasahuasi)
YIELD<-huasahuasi$YIELD
market <- YIELD$y1da + YIELD$y2da
non_market <- YIELD$y3da
yield <- market + non_market
model<-with(YIELD,strip.plot(block, clon, trt, yield))
out1<-with(YIELD,LSD.test(yield,clon,model$gl.a,model$Ea))
oldpar<-par(mar=c(3,8,1,1),cex=0.8)
plot(out1,xlim=c(0,80),horiz=TRUE,las=1)
out2<-with(YIELD,LSD.test(yield,trt,model$gl.b,model$Eb))
plot(out2,xlim=c(0,80),horiz=TRUE,las=1)
par(oldpar)

Run the code above in your browser using DataLab