Learn R Programming

agricolae (version 1.3-7)

waller: Computations of Bayesian t-values for multiple comparisons

Description

A Bayes rule for the symmetric multiple comparisons problem.

Usage

waller(K, q, f, Fc)

Value

Waller value for the Waller and Duncan test.

Arguments

K

Is the loss ratio between type I and type II error

q

Numerator Degrees of freedom

f

Denominator Degrees of freedom

Fc

F ratio from an analysis of variance

Author

Felipe de Mendiburu

Details

K-RATIO (K): value specifies the Type 1/Type 2 error seriousness ratio for the Waller-Duncan test. Reasonable values for KRATIO are 50, 100, and 500, which roughly correspond for the two-level case to ALPHA levels of 0.1, 0.05, and 0.01. By default, the procedure uses the default value of 100.

References

Waller, R. A. and Duncan, D. B. (1969). A Bayes Rule for the Symmetric Multiple Comparison Problem, Journal of the American Statistical Association 64, pages 1484-1504.

Waller, R. A. and Kemp, K. E. (1976) Computations of Bayesian t-Values for Multiple Comparisons, Journal of Statistical Computation and Simulation, 75, pages 169-172.

Principles and procedures of statistics a biometrical approach Steel & Torry & Dickey. Third Edition 1997.

See Also

waller.test

Examples

Run this code
# Table Duncan-Waller K=100, F=1.2 pag 649 Steel & Torry
library(agricolae)
K<-100
Fc<-1.2
q<-c(8,10,12,14,16,20,40,100)
f<-c(seq(4,20,2),24,30,40,60,120)
n<-length(q)
m<-length(f)
W.D <-rep(0,n*m)
dim(W.D)<-c(n,m)
for (i in 1:n) {
for (j in 1:m) {
W.D[i,j]<-waller(K, q[i], f[j], Fc)
}}
W.D<-round(W.D,2)
dimnames(W.D)<-list(q,f)
print(W.D)

Run the code above in your browser using DataLab