if (FALSE) {
  library(agridat)
  data(bailey.cotton.uniformity)
  dat <- bailey.cotton.uniformity
  dat <- transform(dat, env=paste(year,loc))
  # Data check. Matches Bailey 1926 Table 1. 28.13, , 46.02, 31.74, 13.52
  libs(dplyr)
  # dat 
  libs(desplot)
  desplot(dat, yield ~ col*row|env, main="bailey.cotton.uniformity")
  # The yield scales are quite different at each loc, and the dimensions
  # are different, so plot each location separately.
  # Note: Bailey does not say if plots are 7x15 meters, or 15x7 meters.
  # The choices here seem most likely in our opinion.
  desplot(dat, yield ~ col*row, subset= env=="1921 Sakha",
    main="1921 Sakha", aspect=(20*8.5)/(8*15))
  desplot(dat, yield ~ col*row, subset= env=="1921 Gemmeiza",
    main="1921 Gemmeiza", aspect=(20*8.5)/(8*15))
  desplot(dat, yield ~ col*row, subset= env=="1922 Gemmeiza",
    main="1922 Gemmeiza", aspect=(20*8.5)/(8*15))
  desplot(dat, yield ~ col*row, subset= env=="1921 Giza",
    main="1921 Giza", aspect=(11*6)/(14*8.5))
  # 1923 Giza has alternately hi/lo yield rows. Not noticed by Bailey.
  desplot(dat, yield ~ col*row, subset= env=="1923 Giza",
    main="1923 Giza", aspect=(20*6)/(8*8.5))
  
}  
Run the code above in your browser using DataLab