Learn R Programming

agridat (version 1.23)

cox.stripsplit: Strip-split-plot of barley with fertilizer, calcium, and soil factors.

Description

Strip-split-plot of barley with fertilizer, calcium, and soil factors.

Arguments

Format

A data frame with 96 observations on the following 5 variables.

rep

replicate, 4 levels

soil

soil, 3 levels

fert

fertilizer, 4 levels

calcium

calcium, 2 levels

yield

yield of winter barley

Details

Four different fertilizer treatments are laid out in vertical strips, which are then split into subplots with different levels of calcium. Soil type is stripped across the split-plot experiment, and the entire experiment is then replicated three times.

Sometimes called a split-block design.

References

SAS/STAT(R) 9.2 User's Guide, Second Edition. Example 23.5 Strip-Split Plot. https://support.sas.com/documentation/cdl/en/statug/63033/HTML/default/viewer.htm#statug_anova_sect030.htm

Examples

Run this code
if (FALSE) {

library(agridat)
data(cox.stripsplit)
dat <- cox.stripsplit

# Raw means
# aggregate(yield ~ calcium, data=dat, mean)
# aggregate(yield ~ soil, data=dat, mean)
# aggregate(yield ~ calcium, data=dat, mean)

libs(HH)
interaction2wt(yield ~ rep + soil + fert + calcium, dat,
               x.between=0, y.between=0,
               main="cox.stripsplit")

# Traditional AOV
m1 <- aov(yield~ fert*calcium*soil +
          Error(rep/(fert+soil+calcium:fert+soil:fert)),
          data=dat)
summary(m1)

# With balanced data, the following are all basically identical

libs(lme4)
# The 'rep:soil:fert' term causes problems...so we drop it.
m2 <- lmer(yield ~ fert*soil*calcium + (1|rep) + (1|rep:fert) +
             (1|rep:soil) + (1|rep:fert:calcium), data=dat)


if(0){
  # afex uses Kenword-Rogers approach for denominator d.f.
  libs(afex)
  mixed(yield ~ fert*soil*calcium + (1|rep) + (1|rep:fert) +
          (1|rep:soil) + (1|rep:fert:calcium) + (1|rep:soil:fert), data=dat,
        control=lmerControl(check.nobs.vs.rankZ="ignore"))
  ##              Effect      stat ndf     ddf F.scaling p.value
  ## 1       (Intercept) 1350.8113   1  3.0009         1  0.0000
  ## 2              fert    3.5619   3  9.0000         1  0.0604
  ## 3              soil    3.4659   2  6.0000         1  0.0999
  ## 4           calcium    1.8835   1 12.0000         1  0.1950
  ## 5         fert:soil    1.2735   6 18.0000         1  0.3179
  ## 6      fert:calcium    4.4457   3 12.0000         1  0.0255
  ## 7      soil:calcium    0.2494   2 24.0000         1  0.7813
  ## 8 fert:soil:calcium    0.3504   6 24.0000         1  0.9027
}

}

Run the code above in your browser using DataLab