Learn R Programming

agridat (version 1.23)

crossa.wheat: Multi-environment trial of wheat for 18 genotypes at 25 locations

Description

Wheat yields for 18 genotypes at 25 locations

Arguments

Format

A data frame with 450 observations on the following 3 variables.

loc

location

locgroup

location group: Grp1-Grp2

gen

genotype

gengroup

genotype group: W1, W2, W3

yield

grain yield, tons/ha

Details

Grain yield from the 8th Elite Selection Wheat Yield Trial to evaluate 18 bread wheat genotypes at 25 locations in 15 countries.

Cross et al. used this data to cluster loctions into 2 mega-environments and clustered genotypes into 3 wheat clusters.

Locations

CodeCountryLocationLatitude (N)Elevation (m)
AKAlgeriaEl Khroub36640
ALAlgeriaSetif361,023
BJBangladeshJoydebpur248
CACyprusAthalassa35142
EGEgyptE1 Gemmeiza318
ESEgyptSakha316
EBEgyptBeni-Suef2928
ILIndiaLudhiana31247
IDIndiaDelhi29228
JMJordanMadaba36785
KNKenyaNjoro02,165
MGMexicoGuanajuato211,765
MSMexicoSonora2738
MMMexicoMichoacfin201,517
NBNepalBhairahwa27105
PIPakistanIslamabad34683
PAPakistanAyub32213
SRSaudi ArabiaRiyadh24600
SGSudanGezira14411
SESpainEncinar3820
SJSpainJerez37180
SCSpainCordoba38110
SSSpainSevilla3820
TBTunisiaBeja37150
TCThailandChiang Mai18 820

Used with permission of Jose' Crossa.

References

Jean-Louis Laffont, Kevin Wright and Mohamed Hanafi (2013). Genotype + Genotype x Block of Environments (GGB) Biplots. Crop Science, 53, 2332-2341. https://doi.org/10.2135/cropsci2013.03.0178

Examples

Run this code
if (FALSE) {

  library(agridat)
  data(crossa.wheat)
  dat <- crossa.wheat
  
  # AMMI biplot.  Fig 3 of Crossa et al.
  libs(agricolae)
  m1 <- with(dat, AMMI(E=loc, G=gen, R=1, Y=yield))
  b1 <- m1$biplot[,1:4]
  b1$PC1 <- -1 * b1$PC1 # Flip vertical
  plot(b1$yield, b1$PC1, cex=0.0,
       text(b1$yield, b1$PC1, cex=.5, labels=row.names(b1),col="brown"),
       main="crossa.wheat AMMI biplot",
       xlab="Average yield", ylab="PC1", frame=TRUE)
  mn <- mean(b1$yield)
  abline(h=0, v=mn, col='wheat')

  g1 <- subset(b1,type=="GEN")
  text(g1$yield, g1$PC1, rownames(g1), col="darkgreen", cex=.5)
  
  e1 <- subset(b1,type=="ENV")
  arrows(mn, 0,
         0.95*(e1$yield - mn) + mn, 0.95*e1$PC1,
         col= "brown", lwd=1.8,length=0.1)
  
  # GGB example
  library(agridat)
  data(crossa.wheat)
  dat2 <- crossa.wheat
  libs(gge)
  # Specify env.group as column in data frame
  m2 <- gge(dat2, yield~gen*loc,
            env.group=locgroup, gen.group=gengroup,
            scale=FALSE)
  biplot(m2, main="crossa.wheat - GGB biplot")
  
}

Run the code above in your browser using DataLab