Learn R Programming

agridat (version 1.23)

harris.multi.uniformity: Uniformity trials with multiple crops, 15 years on the same land

Description

Uniformity trials with multiple crops, at Huntley Field Station, Montana, 1911-1925.

Arguments

Format

A data frame with 1058 observations on the following 5 variables.

series

series (field coordinate)

plot

plot number (field ordinate)

year

year, 1911-1925

crop

crop

yield

yield per plot (pounds)

Details

The yields given in Harris (1920) (Practical universality...) are given for quarter-plots.

The yields given in Harris (1920) (Permanence of ...)

The yields given in Harris (1928) are given for single plots.

Field width: 2 plots * 317 ft + 5 feet alley = 639 feet

Field length: 23 plots * 23.3 feet = 536 feet

All yields are given in pound per plot. The original data in Harris (1920) for the 1911 sugarbeet yields were in tons/ac, (Harris 1920, table 3 footnote), but these were converted to pounds/plot for the purpose of this dataset. given in tons per acre.

Harris (1928) shows a map of the location on page 16.

Harris (1920):

1911: In the spring of 1911 this field was laid out into 46 plots, each measuring 23.5 by 317 feet and containing 0.17 acre, arranged in two parallel series of 23 plots each. The two series of plots were separated merely by a temporary irrigation ditch. In 1911 it was planted to sugar beets.

1912: In the spring of 1912 it was seeded to alfalfa, and one cutting was harvested that year. This stand remained on the ground during 1913 and 1914, when the entire field was fall-plowed.

1913: Three cuttings were made, but the third cutting was lost in a heavy wind which scattered and mixed the crop before weighings from the various plots could be made. The first cutting, designated as alfalfa I, was made on plots one-half the original size. The second cutting was harvested from plots one-quarter the original size.

1914: The first and second cuttings in 1914 were weighed for plots one-quarter the original size--that is, 0.0425-acre plots--while the third cutting was recorded for plots one-third the original size. These furnish the data for alfalfa I, II, and III for 1914. Total yields for the first and second cuttings in 1913 and 1914 and for the first, second, and third cuttings in 1914 are also considered.

1915: Ear corn.

1916: Ear corn.

1917: The fields were planted to oats, and records were made of grain, straw, and total yield.

1918: Silage corn was grown.

1919: The land produced a crop of barley.

1920: Silage corn

1921 Alfalfa

1922 Alfalfa, cutting 3

1923 Alfalfa, cutting 1 and 3

1914 Alfalfa, cutting 2 and 3

Harris (1928):

The southeast corner of Series II, the east series, is about 80 feet from the main canal, and the southwest corner of Series III is about 50 feet from Ouster Coulee. The main project canal carries normally during the irrigation season about 400 second-feet of water. The water surface in the canal is about 4 feet above the high corner of the field. It is evident from surface conditions, as well as from borings made between the canal and the field, that there is extensive seepage from the canal into the subsoil of the field. The volume of this seepage has been larger in recent years than it was in the earlier years of the cropping experiments, probably because the canal bank has been worn away by internal erosion, exposing a stratum of sandy subsoil that underlies the canal and part of the field.

Whereas in the earlier crops Series II was better for alfalfa, Series III was better for alfalfa in the later period. The writers feel inclined to suggest that in the earlier experiments the height of the water table had no harmful effect upon a deep-rooted crop such as alfalfa. It is quite possible that during drier periods the higher water table actually favored alfalfa growth on Series II. The higher water tables of recent years have probably had a deleterious influence, which has been especially marked on Series II, where the water apparently comes nearer to the surface than in Series III.

Examples

Run this code
if (FALSE) {
library(agridat)

data(harris.multi.uniformity)
dat <- harris.multi.uniformity
# Combine year/crop into 'harvest'
dat <- transform(dat, harv = factor(paste0(year,".",crop)))

# Average yields. Harris 1928, table 2.
aggregate(yield~harv, dat, mean)

# Corrgram
libs(reshape2,corrgram)
mat <- acast(dat, series+plot~harv, value.var='yield')
corrgram(mat, main="harris.multi.uniformity - correlation of crop yields")


# Compare to Harris 1928, table 4.  More positive than negative correlations.
# densityplot(as.vector(cor(mat)), xlab="correlations",
#             main="harris.multi.uniformity")

  
# Standardize yields for each year
mats <- scale(mat)
# Melt and re-name columns so we can make field maps.  Obvious spatial
# patterns that persist over years
d2 <- melt(mats)
names(d2) <- c('ord','harv','yield')
d2$series <- as.numeric(substring(d2$ord,1,1))
d2$plot <- as.numeric(substring(d2$ord,3))

# Series 2 is on the east side, so switch 2 and 3 for correct plotting
d2$xord <- 5 - dat$series
# Note that for alfalfa, higher-yielding plots in 1912-1914 were
# lower-yielding in 1922-1923.
# Heatmaps for individual year/harvest combinations
libs(desplot)
desplot(d2, yield ~ xord*plot|harv,
        aspect=536/639, flip=TRUE, # true aspect
        main="harris.multi.uniformity")

# Crude fertility map by averaging across years shows probable
# sub-surface water effects
agg <- aggregate(yield ~ xord + plot, data=d2, mean)
desplot(agg, yield ~ xord + plot,
        aspect=536/639, # true aspect
        main="harris.multi.uniformity fertility")

}

Run the code above in your browser using DataLab