Learn R Programming

agridat (version 1.23)

stroup.splitplot: Split-plot experiment of simulated data

Description

A simulated dataset of a very simple split-plot experiment, used to illustrate the details of calculating predictable functions (broad space, narrow space, etc.).

For example, the density of narrow, intermediate and broad-space predictable function for factor level A1 is shown below (html help only) Figure: stroup.splitplot.png

Arguments

Format

y

simulated response

rep

replicate, 4 levels

b

sub-plot, 2 levels

a

whole-plot, 3 levels

Used with permission of Walt Stroup.

References

Wolfinger, R.D. and Kass, R.E., 2000. Nonconjugate Bayesian analysis of variance component models, Biometrics, 56, 768--774. https://doi.org/10.1111/j.0006-341X.2000.00768.x

Examples

Run this code
if (FALSE) {
  
  library(agridat)
  data(stroup.splitplot)
  dat <- stroup.splitplot

  # ---- lme4 ---
  # libs(lme4)
  # m0 <- lmer(y~ -1 + a + b + a:b + (1|rep) + (1|a:rep), data=dat)
  # No predict function
  
  # ----- nlme ---
  # libs(nlme)
  # m0 <- lme(y ~ -1 + a + b + a:b, data=dat, random = ~ 1|rep/a)
  
  # ----- ASREML model ---
  if(require("asreml", quietly=TRUE)){
    libs(asreml,lucid)
    m1 <- asreml(y~ -1 + a + b + a:b, random=~ rep + a:rep, data=dat)
  
    # vc(m1) # Variance components match Stroup p. 41
    ##   effect component std.error z.ratio bound
    ##      rep    62.42     56.41      1.1     P
    ##    a:rep    15.39     11.8       1.3     P
    ## units(R)     9.364     4.415     2.1     P
    
    # Narrow space predictions
    predict(m1, data=dat, classify="a", average=list(rep=NULL))
    #  a Predicted Std Err    Status
    # a1     32.88   1.082 Estimable
    # a2     34.12   1.082 Estimable
    # a3     25.75   1.082 Estimable
    
    # Intermediate space predictions
    predict(m1, data=dat, classify="a", ignore="a:rep",
            average=list(rep=NULL))
    #  a Predicted Std Err    Status
    # a1     32.88    2.24 Estimable
    # a2     34.12    2.24 Estimable
    # a3     25.75    2.24 Estimable
    
    # Broad space predictions
    predict(m1, data=dat, classify="a")
    #  a Predicted Std Err    Status
    # a1     32.88    4.54 Estimable
    # a2     34.12    4.54 Estimable
    # a3     25.75    4.54 Estimable
  }    

  # ----- MCMCglmm model -----
  # Use the point estimates from REML with a prior distribution
  libs(lattice,MCMCglmm)
  prior2 = list(
    G = list(G1=list(V=62.40, nu=1),
             G2=list(V=15.38, nu=1)),
    R = list(V = 9.4, nu=1)
  )
  m2 <- MCMCglmm(y~ -1 + a + b + a:b,
                 random=~ rep + a:rep, data=dat,
                 pr=TRUE, # save random effects as columns of 'Sol'
                 nitt=23000, # double the default 13000
                 prior=prior2, verbose=FALSE)

  # posterior.mode(m2$VCV)
  #       rep     a:rep     units 
  # 39.766020  9.617522  7.409334
  # plot(m2$VCV)

  # Now create a matrix of coefficients for the prediction.
  # Each column is for a different prediction.  For example,
  # the values in the column called 'a1a2n' are multiplied times
  # the model coefficients (identified at the right side) to create
  # the linear contrast for the the narrow-space predictions
  # (also called adjusted mean) for the a1:a2 interaction.
  #              a1n   a1i  a1b a1a2n a1a2ib
  cm <- matrix(c(1,   1,   1,    1,    1,   # a1
                 0,   0,   0,   -1,   -1,   # a2
                 0,   0,   0,    0,    0,   # a3
                 1/2, 1/2, 1/2,    0,    0,   # b2
                 0,   0,   0,  -1/2,  -1/2, # a2:b2
                 0,   0,   0,    0,    0,   # a3:b2
                 1/4, 1/4,   0,    0,    0,   # r1
                 1/4, 1/4,   0,    0,    0,   # r2
                 1/4, 1/4,   0,    0,    0,   # r3
                 1/4, 1/4,   0,    0,    0,   # r4
                 1/4,   0,   0,  1/4,    0,   # a1r1
                 0,   0,   0, -1/4,    0,   # a2r1
                 0,   0,   0,    0,    0,   # a3r1
               1/4,   0,   0,  1/4,    0,   # a1r2
                 0,   0,   0, -1/4,    0,   # a2r2
                 0,   0,   0,    0,    0,   # a3r2
               1/4,   0,   0,  1/4,    0,   # a1r3
                 0,   0,   0, -1/4,    0,   # a2r3
                 0,   0,   0,    0,    0,   # a3r3
               1/4,   0,   0,  1/4,    0,   # a1r4
                 0,   0,   0, -1/4,    0,   # a2r4
                 0,   0,   0,    0,    0),  # a3r4
               ncol=5, byrow=TRUE)
  rownames(cm) <-   c("a1", "a2", "a3", "b2", "a2:b2", "a3:b2",
                      "r1", "r2", "r3", "r4",
                      "a1r1", "a1r2", "a1r3", "a1r4", "a2r1", "a2r2",
                      "a2r3", "a2r4", "a3r1", "a3r2",  "a3r3", "a3r4")
  colnames(cm) <- c("A1n","A1i","A1b", "A1-A2n", "A1-A2ib")
  print(cm)
  # post2 <- as.mcmc(m2$Sol 
  post2 <- as.mcmc(crossprod(t(m2$Sol), cm))

  # Following table has columns for A1 estimate (narrow, intermediate, broad)
  # A1-A2 estimate (narrow and intermediat/broad).
  # The REML estimates are from Stroup 1989.
  est <- rbind("REML est"=c(32.88, 32.88, 32.88, -1.25, -1.25),
               "REML stderr"=c(1.08, 2.24, 4.54, 1.53, 3.17),
               "MCMC mode"=posterior.mode(post2),
               "MCMC stderr"=apply(post2, 2, sd))
  round(est,2)
  #               A1n   A1i   A1b A1-A2n A1-A2ib
  # REML est    32.88 32.88 32.88  -1.25   -1.25
  # REML stderr  1.08  2.24  4.54   1.53    3.17
  # MCMC mode   32.95 32.38 31.96  -1.07   -1.17
  # MCMC stderr  1.23  2.64  5.93   1.72    3.73
  # plot(post2)
  
  post22 <- lattice::make.groups(
    Narrow=post2[,1], Intermediate=post2[,2], Broad=post2[,3])
  print(densityplot(~data|which, data=post22, groups=which,
                    cex=.25, lty=1, layout=c(1,3),
                    main="stroup.splitplot",
                    xlab="MCMC model value of predictable function for A1"))

}

Run the code above in your browser using DataLab