Learn R Programming

agridat (version 1.23)

welch.bermudagrass: Factorial experiment of bermuda grass, 4x4x4, N, P, K fertilizers

Description

Factorial experiment of bermuda grass, 4x4x4, N, P, K fertilizers.

Arguments

Format

A data frame with 64 observations on the following 4 variables.

n

nitrogen fertilizer, 4 levels

p

phosphorus, 4 levels

k

potassium, 4 levels

yield

yield of grass, tons/ac

Details

The experiment was conducted 1955, 1956, and 1957.

There were 3 treatment factors:

4 n nitrogen levels: 0, 100, 200, 400 pounds/acre

4 p phosphorous levels: 0, 22, 44, 88 pounds/acre

4 k potassium levels: 0, 42, 84, 168 pounds/acre

There were 3 blocks. The harvests were oven-dried. Each value is the mean for 3 years and 3 replications. In most cases, the yield increased with additions of the fertilizer nutrients.

References

Jim Albert. Bayesian Computation with R. Page 256.

Peter Congdon. Bayesian Statistical Modeling. Page 124-125.

P. McCullagh, John A. Nelder. Generalized Linear Models, 2nd ed. Page 382.

Examples

Run this code
if (FALSE) {

library(agridat)
data(welch.bermudagrass)
dat <- welch.bermudagrass
# Welch uses 100-pound units of n,p,k.
dat <- transform(dat, n=n/100, p=p/100, k=k/100)

libs(latticeExtra)
useOuterStrips(xyplot(yield~n|factor(p)*factor(k), data=dat, type='b',
                      main="welch.bermudagrass: yield for each P*K",
                      xlab="Nitro for each Phosphorous level",
                      ylab="Yield for each Potassim level"))


# Fit a quadratic model
m1 <- lm(yield ~ n + p + k + I(n^2) + I(p^2) + I(k^2) + n:p + n:k + p:k + n:p:k, data=dat)
signif(coef(m1),4) # These match the 3-yr coefficients of Welch, Table 2
## (Intercept)           n           p           k      I(n^2)      I(p^2)
##     1.94300     2.00700     1.47100     0.61880    -0.33150    -1.29500
##      I(k^2)         n:p         n:k         p:k       n:p:k
##    -0.37430     0.20780     0.18740     0.23480     0.02789

# Welch Fig 4.  Modeled response curves
d1 <- expand.grid(n=seq(0, 4, length=50), p=0, k=0)
d1$pred <- predict(m1, d1)
d2 <- expand.grid(n=0, p=0, k=seq(0, 1.68, length=50))
d2$pred <- predict(m1, d2)
d3 <- expand.grid(n=0, p=seq(0, .88, length=50), k=0)
d3$pred <- predict(m1, d3)

op <- par(mfrow=c(1,3), mar=c(5,3,4,1))
plot(pred~n, data=d1, type='l', ylim=c(0,6), xlab="N 100 lb/ac", ylab="")
plot(pred~k, data=d2, type='l', ylim=c(0,6), xlab="K 100 lb/ac", ylab="")
title("welch.bermudagrass - Predicted yield vs fertilizer", outer=TRUE, line= -3)
plot(pred~p, data=d3, type='l', ylim=c(0,6), xlab="P 100 lb/ac",
ylab="")
par(op)

# Brute-force grid-search optimization of fertilizer quantities, using
# $25/ton for grass, $.12/lb for N, $.18/lb for P, $.07/lb for K
# Similar to Example 5 in Table 4 of Welch
d4 <- expand.grid(n=seq(3,4,length=20), p=seq(.5, 1.5, length=20),
                  k=seq(.8, 1.8, length=20))
d4$pred <- predict(m1, newdata=d4)
d4 <- transform(d4, income = 25*pred - .12*n*100 + -.18*p*100 -.07*k*100)
d4[which.max(d4$income),] # Optimum at 300 lb N, 71 lb P, 148 lb K


# ----- JAGS -----
if(0){
  # Congdon (2007) p. 124, provides a Bayesian model based on a GLM
  # by McCullagh & Nelder.  We use JAGS and simplify the code.
  # y ~ gamma with shape = nu, scale = nu * eps_i
  # 1/eps = b0 + b1/(N+a1) + b2/(P+a2) + b3/(K+a3)
  # N,P,K are added fertilizer amounts, a1,a2,a3 are background
  # nutrient levels and b1,b2,b3 are growth parameters.

  libs(rjags)

  mod.bug =
  "model {
  for(i in 1:nobs) {
    yield[i] ~ dgamma(nu, mu[i])
    mu[i] <- nu * eta[i]
    eta[i] <- b0 + b1 / (N[i]+a1) + b2 / (P[i]+a2) + b3 / (K[i]+a3)
    yhat[i] <- 1 / eta[i]
  }

  # Hyperparameters
  nu ~ dgamma(0.01, 0.01)
  a1 ~ dnorm(40, 0.01) # Informative priors
  a2 ~ dnorm(22, 0.01)
  a3 ~ dnorm(32, 0.01)
  b0 ~ dnorm(0, 0.0001)
  b1 ~ dnorm(0, 0.0001) I(0,) # Keep b1 non-negative
  b2 ~ dnorm(0, 0.0001) I(0,)
  b3 ~ dnorm(0, 0.0001) I(0,)
}"

  jdat <- with(welch.bermudagrass,
               list(yield=yield, N=n, P=p, K=k, nobs=64))
  jinit = list(a1=40, a2=22, a3=32, b0=.1, b1=10, b2=1, b3=1)

  oo <- textConnection(mod.bug)
  j1 <- jags.model(oo, data=jdat, inits=jinit, n.chains=3)
  close(oo)
  
  c1 <- coda.samples(j1, c("b0","b1","b2","b3", "a1","a2","a3"),
                     n.iter=10000)

  # Results nearly identical go Congdon
  print(summary(c1)$statistics[,1:2],dig=1)
  # libs(lucid)
  # print(vc(c1),3)
  ##       Mean     SD
  ## a1  44.85  4.123
  ## a2  23.63  7.37
  ## a3  35.42  8.57
  ## b0   0.092 0.0076
  ## b1  13.23  1.34
  ## b2   1.186 0.47
  ## b3   1.50  0.48

  d2 <- coda.samples(j1, "yhat", n.iter=10000)
  dat$yhat <- summary(d2)$statistics[,1]
  with(dat, plot(yield, yield-yhat))
}

}

Run the code above in your browser using DataLab