if (FALSE) {
library(agridat)
data(yates.missing)
dat <- yates.missing
libs(lattice)
bwplot(y ~ trt, data=dat,
xlab="Treatment", ylab="Infection intensity",
main="yates.missing")
libs(reshape2)
mat0 <- acast(dat[, c('trt','block','y')], trt~block,
id.var=c('trt','block'), value.var='y')
# Use lm to estimate missing values. The estimated missing values
# are the same as in Yates (1933)
m1 <- lm(y~trt+block, dat)
dat$pred <- predict(m1, new=dat[, c('trt','block')])
dat$filled <- ifelse(is.na(dat$y), dat$pred, dat$y)
mat1 <- acast(dat[, c('trt','block','pred')], trt~block,
id.var=c('trt','block'), value.var='pred')
# Another method to estimate missing values via PCA
libs("nipals")
m2 <- nipals(mat0, center=FALSE, ncomp=3, fitted=TRUE)
# mat2 <- m2$scores
mat2 <- m2$fitted
# See also pcaMethods::svdImpute
# Compare
ord <- c("0","n","k","p","nk","np","kp","nkp")
print(mat0[ord,], na.print=".")
round(mat1[ord,] ,2)
round(mat2[ord,] ,2)
# mat2 SVD with 3 components recovers original data better than
# mat1 from lm()
sum((mat0-mat1)^2, na.rm=TRUE)
sum((mat0-mat2)^2, na.rm=TRUE) # Smaller SS => better fit
}
Run the code above in your browser using DataLab