R6
class for creation and definition of .AIFE*Transformer-like
classesThis base class is used to create and define .AIFE*Transformer-like
classes. It serves as a skeleton
for a future concrete transformer and cannot be used to create an object of itself (an attempt to call new
-method
will produce an error).
See p.1 Base Transformer Class in Transformers for Developers for details.
The create
-method is a basic algorithm that is used to create a new transformer, but cannot be
called directly.
The train
-method is a basic algorithm that is used to train and tune the transformer but cannot be
called directly.
There are already implemented concrete (child) transformers (e.g.
BERT
, DeBERTa-V2
, etc.), to implement a new one see p.4 Implement A Custom Transformer in
Transformers for Developers
params
A list containing transformer's parameters ('static', 'dynamic' and 'dependent' parameters)
list()
containing all the transformer parameters. Can be set with set_model_param()
.
Regardless of the transformer, the following parameters are always included:
ml_framework
text_dataset
sustain_track
sustain_iso_code
sustain_region
sustain_interval
trace
pytorch_safetensors
log_dir
log_write_interval
In the case of create it also contains (see create
-method for details):
model_dir
vocab_size
max_position_embeddings
hidden_size
hidden_act
hidden_dropout_prob
attention_probs_dropout_prob
intermediate_size
num_attention_heads
In the case of train it also contains (see train
-method for details):
output_dir
model_dir_path
p_mask
whole_word
val_size
n_epoch
batch_size
chunk_size
min_seq_len
full_sequences_only
learning_rate
n_workers
multi_process
keras_trace
pytorch_trace
Depending on the transformer and the method used class may contain different parameters:
vocab_do_lower_case
num_hidden_layer
add_prefix_space
etc.
temp
A list containing temporary transformer's parameters
list()
containing all the temporary local variables that need to be accessed between the step functions. Can
be set with set_model_temp()
.
For example, it can be a variable tok_new
that stores the tokenizer from
steps_for_creation$create_tokenizer_draft
. To train the tokenizer, access the variable tok_new
in
steps_for_creation$calculate_vocab
through the temp
list of this class.
new()
An object of this class cannot be created. Thus, method's call will produce an error.
.AIFEBaseTransformer$new()
This method returns an error.
set_title()
Setter for the title. Sets a new value for the title
private attribute.
.AIFEBaseTransformer$set_title(title)
title
string
A new title.
This method returns nothing.
set_model_param()
Setter for the parameters. Adds a new parameter and its value to the params
list.
.AIFEBaseTransformer$set_model_param(param_name, param_value)
param_name
string
Parameter's name.
param_value
any
Parameter's value.
This method returns nothing.
set_model_temp()
Setter for the temporary model's parameters. Adds a new temporary parameter and its value to the
temp
list.
.AIFEBaseTransformer$set_model_temp(temp_name, temp_value)
temp_name
string
Parameter's name.
temp_value
any
Parameter's value.
This method returns nothing.
set_SFC_check_max_pos_emb()
Setter for the check_max_pos_emb
element of the private steps_for_creation
list. Sets a new
fun
function as the check_max_pos_emb
step.
.AIFEBaseTransformer$set_SFC_check_max_pos_emb(fun)
fun
function()
A new function.
This method returns nothing.
set_SFC_create_tokenizer_draft()
Setter for the create_tokenizer_draft
element of the private steps_for_creation
list. Sets a
new fun
function as the create_tokenizer_draft
step.
.AIFEBaseTransformer$set_SFC_create_tokenizer_draft(fun)
fun
function()
A new function.
This method returns nothing.
set_SFC_calculate_vocab()
Setter for the calculate_vocab
element of the private steps_for_creation
list. Sets a new fun
function as the calculate_vocab
step.
.AIFEBaseTransformer$set_SFC_calculate_vocab(fun)
fun
function()
A new function.
This method returns nothing.
set_SFC_save_tokenizer_draft()
Setter for the save_tokenizer_draft
element of the private steps_for_creation
list. Sets a new
fun
function as the save_tokenizer_draft
step.
.AIFEBaseTransformer$set_SFC_save_tokenizer_draft(fun)
fun
function()
A new function.
This method returns nothing.
set_SFC_create_final_tokenizer()
Setter for the create_final_tokenizer
element of the private steps_for_creation
list. Sets a new
fun
function as the create_final_tokenizer
step.
.AIFEBaseTransformer$set_SFC_create_final_tokenizer(fun)
fun
function()
A new function.
This method returns nothing.
set_SFC_create_transformer_model()
Setter for the create_transformer_model
element of the private steps_for_creation
list. Sets a
new fun
function as the create_transformer_model
step.
.AIFEBaseTransformer$set_SFC_create_transformer_model(fun)
fun
function()
A new function.
This method returns nothing.
set_required_SFC()
Setter for all required elements of the private steps_for_creation
list. Executes setters for all
required creation steps.
.AIFEBaseTransformer$set_required_SFC(required_SFC)
required_SFC
list()
A list of all new required steps.
This method returns nothing.
set_SFT_load_existing_model()
Setter for the load_existing_model
element of the private steps_for_training
list. Sets a new
fun
function as the load_existing_model
step.
.AIFEBaseTransformer$set_SFT_load_existing_model(fun)
fun
function()
A new function.
This method returns nothing.
set_SFT_cuda_empty_cache()
Setter for the cuda_empty_cache
element of the private steps_for_training
list. Sets a new
fun
function as the cuda_empty_cache
step.
.AIFEBaseTransformer$set_SFT_cuda_empty_cache(fun)
fun
function()
A new function.
This method returns nothing.
set_SFT_create_data_collator()
Setter for the create_data_collator
element of the private steps_for_training
list. Sets a new
fun
function as the create_data_collator
step. Use this method to make a custom data collator for a
transformer.
.AIFEBaseTransformer$set_SFT_create_data_collator(fun)
fun
function()
A new function.
This method returns nothing.
create()
This method creates a transformer configuration based on the child-transformer architecture and a
vocabulary using the python libraries transformers
and tokenizers
.
This method adds the following parameters to the temp
list:
log_file
raw_text_dataset
pt_safe_save
value_top
total_top
message_top
This method uses the following parameters from the temp
list:
log_file
raw_text_dataset
tokenizer
.AIFEBaseTransformer$create(
ml_framework,
model_dir,
text_dataset,
vocab_size,
max_position_embeddings,
hidden_size,
num_attention_heads,
intermediate_size,
hidden_act,
hidden_dropout_prob,
attention_probs_dropout_prob,
sustain_track,
sustain_iso_code,
sustain_region,
sustain_interval,
trace,
pytorch_safetensors,
log_dir,
log_write_interval
)
ml_framework
string
Framework to use for training and inference.
ml_framework = "tensorflow"
: for 'tensorflow'.
ml_framework = "pytorch"
: for 'pytorch'.
model_dir
string
Path to the directory where the model should be saved.
text_dataset
Object of class LargeDataSetForText.
vocab_size
int
Size of the vocabulary.
max_position_embeddings
int
Number of maximum position embeddings. This parameter also determines the maximum length of a sequence which
can be processed with the model.
hidden_size
int
Number of neurons in each layer. This parameter determines the dimensionality of the resulting text
embedding.
num_attention_heads
int
Number of attention heads.
intermediate_size
int
Number of neurons in the intermediate layer of the attention mechanism.
hidden_act
string
Name of the activation function.
hidden_dropout_prob
double
Ratio of dropout.
attention_probs_dropout_prob
double
Ratio of dropout for attention probabilities.
sustain_track
bool
If TRUE
energy consumption is tracked during training via the python library codecarbon.
sustain_iso_code
string
ISO code (Alpha-3-Code) for the country. This variable must be set if sustainability should be tracked. A
list can be found on Wikipedia: https://en.wikipedia.org/wiki/List_of_ISO_3166_country_codes.
sustain_region
string
Region within a country. Only available for USA and Canada. See the documentation of codecarbon for more
information https://mlco2.github.io/codecarbon/parameters.html.
sustain_interval
integer
Interval in seconds for measuring power usage.
trace
bool
TRUE
if information about the progress should be printed to the console.
pytorch_safetensors
bool
Only relevant for pytorch models.
TRUE
: a 'pytorch' model is saved in safetensors format.
FALSE
(or 'safetensors' is not available): model is saved in the standard pytorch format (.bin).
log_dir
Path to the directory where the log files should be saved.
log_write_interval
int
Time in seconds determining the interval in which the logger should try to update the log files. Only relevant
if log_dir
is not NULL
.
This method does not return an object. Instead, it saves the configuration and vocabulary of the new model to disk.
train()
This method can be used to train or fine-tune a transformer based on BERT
architecture with the
help of the python libraries transformers
, datasets
, and tokenizers
.
This method adds the following parameters to the temp
list:
log_file
loss_file
from_pt
from_tf
load_safe
raw_text_dataset
pt_safe_save
value_top
total_top
message_top
This method uses the following parameters from the temp
list:
log_file
raw_text_dataset
tokenized_dataset
tokenizer
.AIFEBaseTransformer$train(
ml_framework,
output_dir,
model_dir_path,
text_dataset,
p_mask,
whole_word,
val_size,
n_epoch,
batch_size,
chunk_size,
full_sequences_only,
min_seq_len,
learning_rate,
n_workers,
multi_process,
sustain_track,
sustain_iso_code,
sustain_region,
sustain_interval,
trace,
keras_trace,
pytorch_trace,
pytorch_safetensors,
log_dir,
log_write_interval
)
ml_framework
string
Framework to use for training and inference.
ml_framework = "tensorflow"
: for 'tensorflow'.
ml_framework = "pytorch"
: for 'pytorch'.
output_dir
string
Path to the directory where the final model should be saved. If the directory does not exist, it will be
created.
model_dir_path
string
Path to the directory where the original model is stored.
text_dataset
Object of class LargeDataSetForText.
p_mask
double
Ratio that determines the number of words/tokens used for masking.
whole_word
bool
TRUE
: whole word masking should be applied.
FALSE
: token masking is used.
val_size
double
Ratio that determines the amount of token chunks used for validation.
n_epoch
int
Number of epochs for training.
batch_size
int
Size of batches.
chunk_size
int
Size of every chunk for training.
full_sequences_only
bool
TRUE
for using only chunks with a sequence length equal to chunk_size
.
min_seq_len
int
Only relevant if full_sequences_only = FALSE
. Value determines the minimal sequence length included in
training process.
learning_rate
double
Learning rate for adam optimizer.
n_workers
int
Number of workers. Only relevant if ml_framework = "tensorflow"
.
multi_process
bool
TRUE
if multiple processes should be activated. Only relevant if ml_framework = "tensorflow"
.
sustain_track
bool
If TRUE
energy consumption is tracked during training via the python library codecarbon.
sustain_iso_code
string
ISO code (Alpha-3-Code) for the country. This variable must be set if sustainability should be tracked. A
list can be found on Wikipedia: https://en.wikipedia.org/wiki/List_of_ISO_3166_country_codes.
sustain_region
string
Region within a country. Only available for USA and Canada. See the documentation of codecarbon for more
information https://mlco2.github.io/codecarbon/parameters.html.
sustain_interval
integer
Interval in seconds for measuring power usage.
trace
bool
TRUE
if information about the progress should be printed to the console.
keras_trace
int
keras_trace = 0
: does not print any information about the training process from keras on the console.
keras_trace = 1
: prints a progress bar.
keras_trace = 2
: prints one line of information for every epoch. Only relevant if ml_framework = "tensorflow"
.
pytorch_trace
int
pytorch_trace = 0
: does not print any information about the training process from pytorch on the console.
pytorch_trace = 1
: prints a progress bar.
pytorch_safetensors
bool
Only relevant for pytorch models.
TRUE
: a 'pytorch' model is saved in safetensors format.
FALSE
(or 'safetensors' is not available): model is saved in the standard pytorch format (.bin).
log_dir
Path to the directory where the log files should be saved.
log_write_interval
int
Time in seconds determining the interval in which the logger should try to update the log files. Only relevant
if log_dir
is not NULL
.
This method does not return an object. Instead, it saves the configuration and vocabulary of the new model to disk.
clone()
The objects of this class are cloneable with this method.
.AIFEBaseTransformer$clone(deep = FALSE)
deep
Whether to make a deep clone.
Hugging Face transformers documantation:
Other Transformers for developers:
.AIFEBertTransformer
,
.AIFEDebertaTransformer
,
.AIFEFunnelTransformer
,
.AIFELongformerTransformer
,
.AIFEMpnetTransformer
,
.AIFERobertaTransformer
,
.AIFETrObj