Users wanting to use FUN_MOD
functions that are not included in
the package must create their own RunOptions
object accordingly.
## --- IndPeriod_WarmUp and IndPeriod_Run
Since the hydrological models included in airGR are continuous models, meaning that internal states of the models are propagated to the next time step, IndPeriod_WarmUp
and IndPeriod_Run
must be continuous periods, represented by continuous indices values; no gaps are allowed. To calculate criteria or to calibrate a model over discontinuous periods, please see the Bool_Crit
argument of the CreateInputsCrit
function.
## --- Initialisation options
The model initialisation options can either be set to a default configuration or be defined by the user.
This is done via three vectors:
IndPeriod_WarmUp
, IniStates
, IniResLevels
.
A default configuration is used for initialisation if these vectors are not defined.
(1) Default initialisation options:
IndPeriod_WarmUp
default setting ensures a one-year warm-up using the time steps preceding the IndPeriod_Run
.
The actual length of this warm-up might be shorter depending on data availability (no missing value of climate inputs being allowed in model input series).
IniStates
and IniResLevels
are automatically set to initialise all the model states at 0, except for the production and routing stores levels which are respectively initialised at 30 % and 50 % of their capacity. In case GR5H is used with an interception store, the intercetion store level is initialised by default with 0 mm. In case GR6J is used, the exponential store level is initialised by default with 0 mm. This initialisation is made at the very beginning of the model call (i.e. at the beginning of IndPeriod_WarmUp
or at the beginning of IndPeriod_Run
if the warm-up period is disabled).
(2) Customisation of initialisation options:
## --- CemaNeige version
If IsHyst = FALSE
, the original CemaNeige version from Valéry et al. (2014) is used.
If IsHyst = TRUE
, the CemaNeige version from Riboust et al. (2019) is used. Compared to the original version, this version of CemaNeige needs two more parameters and it includes a representation of the hysteretic relationship between the Snow Cover Area (SCA) and the Snow Water Equivalent (SWE) in the catchment. The hysteresis included in airGR is the Modified Linear hysteresis (LH*); it is represented on panel b) of Fig. 3 in Riboust et al. (2019). Riboust et al. (2019) advise to use the LH* version of CemaNeige with parameters calibrated using an objective function combining 75 % of KGE calculated on discharge simulated from a rainfall-runoff model compared to observed discharge and 5 % of KGE calculated on SCA on 5 CemaNeige elevation bands compared to satellite (e.g. MODIS) SCA (see Eq. (18), Table 3 and Fig. 6). Riboust et al. (2019)'s tests were realized with GR4J as the chosen rainfall-runoff model.