library(airGR)
## loading catchment data
data(L0123001)
## preparation of the InputsModel object
InputsModel <- CreateInputsModel(FUN_MOD = RunModel_GR4J, DatesR = BasinObs$DatesR,
Precip = BasinObs$P, PotEvap = BasinObs$E)
## run period selection
Ind_Run <- seq(which(format(BasinObs$DatesR, format = "%Y-%m-%d")=="1990-01-01"),
which(format(BasinObs$DatesR, format = "%Y-%m-%d")=="1999-12-31"))
## preparation of the RunOptions object
RunOptions <- CreateRunOptions(FUN_MOD = RunModel_GR4J,
InputsModel = InputsModel, IndPeriod_Run = Ind_Run)
## simulation
Param <- c(X1 = 734.568, X2 = -0.840, X3 = 109.809, X4 = 1.971)
OutputsModel <- RunModel(InputsModel = InputsModel, RunOptions = RunOptions,
Param = Param, FUN = RunModel_GR4J)
## efficiency criterion: root-mean-square error
InputsCrit <- CreateInputsCrit(FUN_CRIT = ErrorCrit_RMSE, InputsModel = InputsModel,
RunOptions = RunOptions, Obs = BasinObs$Qmm[Ind_Run])
OutputsCrit <- ErrorCrit_RMSE(InputsCrit = InputsCrit, OutputsModel = OutputsModel)
## efficiency criterion: root-mean-square error on log-transformed flows
transfo <- "log"
InputsCrit <- CreateInputsCrit(FUN_CRIT = ErrorCrit_RMSE, InputsModel = InputsModel,
RunOptions = RunOptions, Obs = BasinObs$Qmm[Ind_Run],
transfo = transfo)
OutputsCrit <- ErrorCrit_RMSE(InputsCrit = InputsCrit, OutputsModel = OutputsModel)
## efficiency criterion: Kling-Gupta Efficiency above a threshold (quant. 75 %)
BoolCrit <- BasinObs$Qmm[Ind_Run] >= quantile(BasinObs$Qmm[Ind_Run], 0.75, na.rm = TRUE)
InputsCrit <- CreateInputsCrit(FUN_CRIT = ErrorCrit_RMSE, InputsModel = InputsModel,
RunOptions = RunOptions, Obs = BasinObs$Qmm[Ind_Run],
BoolCrit = BoolCrit)
OutputsCrit <- ErrorCrit_RMSE(InputsCrit = InputsCrit, OutputsModel = OutputsModel)
Run the code above in your browser using DataLab