library(airGR)
## loading catchment data
data(L0123001)
## conversion of example data from daily to yearly time step
TabSeries <- data.frame(DatesR = BasinObs$DatesR,
P = BasinObs$P,
E = BasinObs$E,
Qmm = BasinObs$Qmm)
TabSeries <- TabSeries[TabSeries$DatesR < as.POSIXct("2012-09-01", tz = "UTC"), ]
BasinObs <- SeriesAggreg(TabSeries, Format = "%Y",
YearFirstMonth = 09,
ConvertFun = c("sum", "sum", "sum"))
## preparation of the InputsModel object
InputsModel <- CreateInputsModel(FUN_MOD = RunModel_GR1A, DatesR = BasinObs$DatesR,
Precip = BasinObs$P, PotEvap = BasinObs$E)
## run period selection
Ind_Run <- seq(which(format(BasinObs$DatesR, format = "%Y")=="1990"),
which(format(BasinObs$DatesR, format = "%Y")=="1999"))
## preparation of the RunOptions object
RunOptions <- CreateRunOptions(FUN_MOD = RunModel_GR1A,
InputsModel = InputsModel, IndPeriod_Run = Ind_Run)
## simulation
Param <- c(X1 = 0.840)
OutputsModel <- RunModel_GR1A(InputsModel = InputsModel, RunOptions = RunOptions, Param = Param)
## results preview
plot(OutputsModel, Qobs = BasinObs$Qmm[Ind_Run])
## efficiency criterion: Nash-Sutcliffe Efficiency
InputsCrit <- CreateInputsCrit(FUN_CRIT = ErrorCrit_NSE, InputsModel = InputsModel,
RunOptions = RunOptions, Obs = BasinObs$Qmm[Ind_Run])
OutputsCrit <- ErrorCrit_NSE(InputsCrit = InputsCrit, OutputsModel = OutputsModel)
Run the code above in your browser using DataLab