These datasets are mentioned in [Akima 1996] as testbed for the
irregular scattered data interpolator.
Franke used the five functions:
$$0.75e^{-\frac{(9x-2)^2+(9y-2)^2}{4}}+
0.75e^{-\frac{(9x+1)^2}{49}-\frac{9y+1}{10}}+
0.5e^{-\frac{(9x-7)^2+(9y-3)^2}{4}}-
0.2e^{-((9x-4)^2-(9y-7)^2)}
$$
$$\frac{\mbox{tanh}(9y-9x)+1}{9}$$
$$\frac{1.25+\cos(5.4y)}{6(1+(3x-1)^2)}$$
$$e^{-\frac{81((x-0.5)^2+\frac{(y-0.5)^2}{16})}{3}}$$
$$e^{-\frac{81((x-0.5)^2+\frac{(y-0.5)^2}{4})}{3}}$$
$$\frac{\sqrt{64-81((x-0.5)^2+(y-0.5)^2)}}{9}-0.5$$
and evaluated them on different more or less dense grids over \([0,1]\times[0,1]\).