if (FALSE) {
data("amExample5")
## Produce amDataset object
myDataset <-
amDataset(
amExample5,
missingCode = "-99",
indexColumn = 1,
metaDataColumn = 2,
ignoreColumn = "gender"
)
## Typical usage
myPairwise <-
amPairwise(
myDataset,
alleleMismatch = 2
)
## Display analysis as HTML in default browser
summary.amPairwise(
myPairwise,
html = TRUE
)
## Save analysis to HTML file
summary.amPairwise(
myPairwise,
html = "myPairwise.htm"
)
## Save analysis to CSV file
summary.amPairwise(
myPairwise,
csv = "myPairwise.csv"
)
## Display analysis as formatted text on the console
summary.amPairwise(myPairwise)
## Compare one dataset against a second
## Both must have same number of allele columns
## Here we create two datasets artificially from one for illustration purposes
myDatasetA <-
amDataset(
amExample5[sample(nrow(amExample5))[1:25], ],
missingCode = "-99",
indexColumn = 1,
ignoreColumn = 2
)
myDatasetB <-
amDataset(
amExample5[sample(nrow(amExample5))[1:100], ],
missingCode = "-99",
indexColumn = 1,
ignoreColumn = 2
)
myPairwise2 <-
amPairwise(
myDatasetA,
myDatasetB,
alleleMismatch = 3
)
summary.amPairwise(
myPairwise2,
html = TRUE
)
}
Run the code above in your browser using DataLab