Learn R Programming

alluvial (version 0.1-2)

alluvial_ts: Alluvial diagram for multiple time series data

Description

This is a variant of alluvial diagram suitable for multiple (cross-sectional) time series. It also works with continuous variables equivalent to time

Usage

alluvial_ts(dat, wave = NA, ygap = 1, col = NA, alpha = NA, plotdir = "up", rankup = FALSE, lab.cex = 1, lab.col = "black", xmargin = 0.1, axis.col = "black", title = NA, title.cex = 1, axis.cex = 1, grid = FALSE, grid.col = "grey80", grid.lwd = 1, leg.mode = TRUE, leg.x = 0.1, leg.y = 0.9, leg.cex = 1, leg.col = "black", leg.lty = NA, leg.lwd = NA, leg.max = NA, xlab = NA, ylab = NA, xlab.pos = 2, ylab.pos = 1, lwd = 1, ...)

Arguments

dat
data.frame of time-series (or suitable equivalent continuously disaggregated data), with 3 columns (in order: category, time-variable, value) with
wave
numeric, curve wavyness defined in terms of x axis data range - i.e. bezier point offset. Experiment to get this right
ygap
numeric, vertical distance between polygons - a multiple of 10% of the mean data value
col
colour, value or vector of length matching the number of unique categories. Individual colours of vector are mapped to categories in alpha-numeric order
alpha
numeric, [0,1] polygon fill transparency
plotdir
character, string ('up', 'down' or 'centred') giving the vertical alignment of polygon stacks
rankup
logical, rank polygons on time axes upward by magnitude (largest to smallest) or not
lab.cex
numeric, category label font size
lab.col
colour, of category label
xmargin
numeric [0,1], proportional space for category labels
axis.col
colour, of axes
title
character, plot title
title.cex
numeric, plot title font size
axis.cex
numeric, font size of x-axis break labels
grid
logical, plot vertical axes
grid.col
colour, of grid axes
grid.lwd
numeric, line width of grid axes
leg.mode
logical, draw y-axis scale legend inside largest data point (TRUE default) or alternatively with custom position/value (FALSE)
leg.x, leg.y
numeric [0,1], x/y positions of legend if leg.mode = FALSE
leg.cex
numeric, legend text size
leg.col
colour, of legend lines and text
leg.lty
numeric, code for legend line type
leg.lwd
numeric, legend line width
leg.max
numeric, legend scale line width
xlab, ylab
character, x-axis / y-axis titles
xlab.pos, ylab.pos
numeric, perpendicular offset for axis titles
lwd
numeric, value or vector of length matching the number of unique categories for polygon stroke line width. Individual values of vector are mapped to categories in alpha-numeric order
...
arguments to pass to polygon()

Examples

Run this code
if( require(reshape2) )
{
data(Refugees)
reshape2::dcast(Refugees, country ~ year, value.var = 'refugees')
d <- Refugees

set.seed(39) # for nice colours
cols <- hsv(h = sample(1:10/10), s = sample(3:12)/15, v = sample(3:12)/15)

alluvial_ts(d)
alluvial_ts(d, wave = .2, ygap = 5, lwd = 3)
alluvial_ts(d, wave = .3, ygap = 5, col = cols)
alluvial_ts(d, wave = .3, ygap = 5, col = cols, rankup = TRUE)
alluvial_ts(d, wave = .3, ygap = 5, col = cols, plotdir = 'down')
alluvial_ts(d, wave = .3, ygap = 5, col = cols, plotdir = 'centred', grid=TRUE,
            grid.lwd = 5)
alluvial_ts(d, wave =  0, ygap = 0, col = cols, alpha = .9, border = 'white',
            grid = TRUE, grid.lwd = 5)
alluvial_ts(d, wave = .3, ygap = 5, col = cols, xmargin = 0.4)
alluvial_ts(d, wave = .3, ygap = 5, col = cols, xmargin = 0.3, lab.cex = .7)
alluvial_ts(d, wave = .3, ygap = 5, col = cols, xmargin = 0.3, lab.cex=.7,
            leg.cex=.7, leg.col = 'white')
alluvial_ts(d, wave = .3, ygap = 5, col = cols, leg.mode = FALSE, leg.x = .1,
            leg.y = .7, leg.max = 3e6)
alluvial_ts(d, wave = .3, ygap = 5, col = cols, plotdir = 'centred', alpha=.9,
            grid = TRUE, grid.lwd = 5, xmargin = 0.2, lab.cex = .7, xlab = '',
            ylab = '', border = NA, axis.cex = .8, leg.cex = .7,
            leg.col='white', 
         title = "UNHCR-recognised refugees\nTop 10 countries (2003-13)\n")

# non time-series example - Virginia deaths dataset
d <- reshape2::melt(data.frame(age=row.names(VADeaths), VADeaths), id.vars='age')[,c(2,1,3)]
names(d) = c('pop_group','age_group','deaths')
alluvial_ts(d)
}

Run the code above in your browser using DataLab