
aout.pois
. We assume that each entry of a contingency table can be seen as a realization of a Poisson random variable. The parameter $\lambda$ of each cell can either be set by the user or estimated. Given the parameters, aout.conttab
identifies $\alpha$-outliers in a given contingency table.
aout.conttab(data, param, alpha = 0.1, hide.outliers = FALSE, show.estimates = FALSE)
c("ML", "L1", "MP")
or a vector containing the parameters of each cell of the Poisson distribution: $\lambda$. "ML"
yields the maximum likelihood estimate from the log-linear Poisson model using a suitable design matrix. "L1"
yields the L1-estimate from rq.fit.fnc
. "MP"
yields the Median Polish estimate. If the parameter vector is given by the user, it is necessary that the contingency table was filled byrow = FALSE
.
TRUE
. Defaults to FALSE
.
TRUE
. Defaults to FALSE
.
is.outlier
that flags the outliers with TRUE
and a vector named param
containing the estimated lambdas.
Kuhnt, S.; Rapallo, F.; Rehage, A. (2014) Outlier detection in contingency tables based on minimal patterns. Statistics and Computing 24 (3), 481-491.
rq.fit.fnc
, aout.pois
aout.conttab(data = HairEyeColor[,,1], param = "L1", alpha = 0.01, show.estimates = TRUE)
aout.conttab(data = HairEyeColor[,,1], param = "ML", alpha = 0.01, show.estimates = TRUE)
Run the code above in your browser using DataLab