# chorioamnionitis data
data("dat.chor")
# GLMM with the logit link with only 10 bootstrap iterations
out.chor.glmm.logit <- maprop.glmm(e, n, data = dat.chor,
link = "logit", b.iter = 10, seed = 1234)
out.chor.glmm.logit
# not calculating the population-averaged (marginal) proportion,
# without bootstrap resampling
out.chor.glmm.logit <- maprop.glmm(e, n, data = dat.chor,
link = "logit", pop.avg = FALSE)
out.chor.glmm.logit
# \donttest{
# increases the number of bootstrap iterations to 1000,
# taking longer time
out.chor.glmm.logit <- maprop.glmm(e, n, data = dat.chor,
link = "logit", b.iter = 1000, seed = 1234)
out.chor.glmm.logit
# GLMM with the log link
out.chor.glmm.log <- maprop.glmm(e, n, data = dat.chor,
link = "log", b.iter = 10, seed = 1234)
out.chor.glmm.log
# GLMM with the probit link
out.chor.glmm.probit <- maprop.glmm(e, n, data = dat.chor,
link = "probit", b.iter = 10, seed = 1234)
out.chor.glmm.probit
# GLMM with the cauchit link
out.chor.glmm.cauchit <- maprop.glmm(e, n, data = dat.chor,
link = "cauchit", b.iter = 10, seed = 1234)
out.chor.glmm.cauchit
# GLMM with the cloglog link
out.chor.glmm.cloglog <- maprop.glmm(e, n, data = dat.chor,
link = "cloglog", b.iter = 10, seed = 1234)
out.chor.glmm.cloglog
# depression data
data("dat.beck17")
out.beck17.glmm.log <- maprop.glmm(e, n, data = dat.beck17,
link = "log", b.iter = 10, seed = 1234)
out.beck17.glmm.log
out.beck17.glmm.logit <- maprop.glmm(e, n, data = dat.beck17,
link = "logit", b.iter = 10, seed = 1234)
out.beck17.glmm.logit
out.beck17.glmm.probit <- maprop.glmm(e, n, data = dat.beck17,
link = "probit", b.iter = 10, seed = 1234)
out.beck17.glmm.probit
out.beck17.glmm.cauchit <- maprop.glmm(e, n, data = dat.beck17,
link = "cauchit", b.iter = 10, seed = 1234)
out.beck17.glmm.cauchit
out.beck17.glmm.cloglog<- maprop.glmm(e, n, data = dat.beck17,
link = "cloglog", b.iter = 10, seed = 1234)
out.beck17.glmm.cloglog
# }
Run the code above in your browser using DataLab