# chorioamnionitis data
data("dat.chor")
# two-step method with the logit transformation
out.chor.twostep.logit <- maprop.twostep(e, n, data = dat.chor,
link = "logit", b.iter = 10, seed = 1234)
out.chor.twostep.logit
# not calculating the population-averaged (marginal) proportion,
# without bootstrap resampling
out.chor.twostep.logit <- maprop.twostep(e, n, data = dat.chor,
link = "logit", pop.avg = FALSE)
out.chor.twostep.logit
# \donttest{
# increases the number of bootstrap iterations to 1000,
# taking longer time
out.chor.twostep.logit <- maprop.twostep(e, n, data = dat.chor,
link = "logit", b.iter = 1000, seed = 1234)
out.chor.twostep.logit
# two-step method with the log transformation
out.chor.twostep.log <- maprop.twostep(e, n, data = dat.chor,
link = "log", b.iter = 10, seed = 1234)
out.chor.twostep.log
# two-step method with the arcsine transformation
out.chor.twostep.arcsine <- maprop.twostep(e, n, data = dat.chor,
link = "arcsine", b.iter = 10, seed = 1234)
out.chor.twostep.arcsine
# two-step method with the Freeman--Tukey double-arcsine transformation
out.chor.twostep.double.arcsine <- maprop.twostep(e, n, data = dat.chor,
link = "double.arcsine", b.iter = 10, seed = 1234)
out.chor.twostep.double.arcsine
# depression data
data("dat.beck17")
out.beck17.twostep.log <- maprop.twostep(e, n, data = dat.beck17,
link = "log", b.iter = 10, seed = 1234)
out.beck17.twostep.log
out.beck17.twostep.logit <- maprop.twostep(e, n, data = dat.beck17,
link = "logit", b.iter = 10, seed = 1234)
out.beck17.twostep.logit
out.beck17.twostep.arcsine <- maprop.twostep(e, n, data = dat.beck17,
link = "arcsine", b.iter = 10, seed = 1234)
out.beck17.twostep.arcsine
out.beck17.twostep.double.arcsine <- maprop.twostep(e, n, data = dat.beck17,
link = "double.arcsine", b.iter = 10, seed = 1234)
out.beck17.twostep.double.arcsine
# }
Run the code above in your browser using DataLab