## meta-analysis of mean differences
data("dat.plourde")
# based on only 10 resampling iterations
set.seed(1234)
out.plourde <- pb.hybrid.generic(y = y, s2 = s2, n = n,
data = dat.plourde, iter.resam = 10)
out.plourde
# only produces resampling-based p-values
set.seed(1234)
pb.hybrid.generic(y = y, s2 = s2, n = n,
data = dat.plourde, iter.resam = 10, theo.pval = FALSE)
# increases the number of resampling iterations to 10000,
# taking longer time
## meta-analysis of standardized mean differences
data("dat.paige")
# based on only 10 resampling iterations
set.seed(1234)
out.paige <- pb.hybrid.generic(y = y, s2 = s2, n = n,
data = dat.paige, iter.resam = 10)
out.paige
# increases the number of resampling iterations to 10000,
# taking longer time
Run the code above in your browser using DataLab