amap (version 0.8-20)

acp: Principal component analysis

Description

Principal component analysis

Usage

acp(x,center=TRUE,reduce=TRUE,wI=rep(1,nrow(x)),wV=rep(1,ncol(x)))
pca(x,center=TRUE,reduce=TRUE,wI=rep(1,nrow(x)),wV=rep(1,ncol(x)))
# S3 method for acp
print(x, ...)

Value

An object of class acp

The object is a list with components:

sdev

the standard deviations of the principal components.

loadings

the matrix of variable loadings (i.e., a matrix whose columns contain the eigenvectors). This is of class "loadings": see loadings for its print method.

scores

if scores = TRUE, the scores of the supplied data on the principal components.

eig

Eigen values

Arguments

x

Matrix / data frame

center

a logical value indicating whether we center data

reduce

a logical value indicating whether we "reduce" data i.e. divide each column by standard deviation

wI,wV

weigth vector for individuals / variables

...

arguments to be passed to or from other methods.

Author

Antoine Lucas

Details

This function offer a variant of princomp and prcomp functions, with a slightly different graphic representation (see plot.acp).

See Also

plot.acp,acpgen, princomp

Examples

Run this code
data(lubisch)
lubisch <- lubisch[,-c(1,8)]
p <- acp(lubisch)
plot(p)

Run the code above in your browser using DataLab