# Fit an SSF, then update movement parameters.
#Prepare data for SSF
ssf_data <- deer %>%
steps_by_burst() %>%
random_steps(n = 15) %>%
extract_covariates(sh_forest) %>%
mutate(forest = factor(sh.forest, levels = 1:2,
labels = c("forest", "non-forest")),
cos_ta_ = cos(ta_),
log_sl_ = log(sl_))
# Check tentative distributions
# Step length
attr(ssf_data, "sl_")
# Turning angle
attr(ssf_data, "ta_")
# Fit an iSSF (note model = TRUE necessary for predict() to work)
m1 <- ssf_data %>%
fit_issf(case_ ~ forest * (sl_ + log_sl_ + cos_ta_) +
strata(step_id_), model = TRUE)
# Update forest step lengths (the reference level)
forest_sl <- update_gamma(m1$sl_,
beta_sl = m1$model$coefficients["sl_"],
beta_log_sl = m1$model$coefficients["log_sl_"])
# Update non-forest step lengths
nonforest_sl <- update_gamma(m1$sl_,
beta_sl = m1$model$coefficients["sl_"] +
m1$model$coefficients["forestnon-forest:sl_"],
beta_log_sl = m1$model$coefficients["log_sl_"] +
m1$model$coefficients["forestnon-forest:log_sl_"])
# Update forest turn angles (the reference level)
forest_ta <- update_vonmises(m1$ta_,
beta_cos_ta = m1$model$coefficients["cos_ta_"])
# Update non-forest turn angles
nonforest_ta <- update_vonmises(m1$ta_,
beta_cos_ta = m1$model$coefficients["cos_ta_"] +
m1$model$coefficients["forestnon-forest:cos_ta_"])
Run the code above in your browser using DataLab