powered by
Plot step-length distribution
plot_sl(x, ...)# S3 method for fit_clogit plot_sl(x, n = 1000, upper_quantile = 0.99, plot = TRUE, ...)# S3 method for random_steps plot_sl(x, n = 1000, upper_quantile = 0.99, plot = TRUE, ...)
# S3 method for fit_clogit plot_sl(x, n = 1000, upper_quantile = 0.99, plot = TRUE, ...)
# S3 method for random_steps plot_sl(x, n = 1000, upper_quantile = 0.99, plot = TRUE, ...)
A plot of the step-length distribution.
[fit_clogit|random_steps] A fitted step selection or random steps.
[fit_clogit|random_steps]
Further arguments, none implemented.
[numeric(1)=1000]{>0} The number of breaks between 0 and upper_quantile.
[numeric(1)=1000]{>0}
0
upper_quantile
[nummeric(1)=0.99]{0-1} The quantile until where the distribution should be plotted. Typically this will be 0.95 or 0.99.
[nummeric(1)=0.99]{0-1}
0.95
0.99
[logical(1)=TRUE] Indicates if a plot should be drawn or not.
[logical(1)=TRUE]
data(deer) # with random steps deer[1:100, ] |> steps_by_burst() |> random_steps() |> plot_sl() deer[1:100, ] |> steps_by_burst() |> random_steps() |> plot_sl(upper_quantile = 0.5)
Run the code above in your browser using DataLab