norm_test_fun
checks for the normality assumption
norm_test_fun(x, method = "anderson", pval = 0.05, xn = "x", bin = FALSE)
a numeric vector
shapiro
for Shapiro-Wilk test or
'anderson'
for 'Anderson-Darling' test of normality or ks
for
'Kolmogorov-Smirnov'
significance level for normality tests. Default is 0.05
vector name
TRUE if only TRUE/FALSE is required
Logical TRUE/FALSE based on the performed test and pval
.
If the vector follows the normality assumption, then TRUE is returned
This function checks for normality assumption using
shapiro, Kolmogorov-Smirnov or Anderson Darling test.
If the parameter bin
is TRUE, then TRUE
is returned
if vector is normal, otherwise FALSE.
The significance level is passed through the parameter
pval
anderson.test
for Anderson Darling test
# NOT RUN {
norm_test_fun(mtcars$mpg)
norm_test_fun(mtcars$mpg, method = "shapiro",
pval = 0.05, xn = "mpg", bin = TRUE)
# }
Run the code above in your browser using DataLab