Anthro
The anthro
package allows you to perform comprehensive analysis of
anthropometric survey data based on the
method developed by the
Department of Nutrition for Health and Development at the World Health
Organization.
The package is modelled after the R macros provided by WHO. The package adds more accurate calculations of confidence intervals and standard errors around the prevalence estimates, taking into account complex sample designs, whenever is the case
Installation
install.packages("anthro")
remotes::install_github("dirkschumacher/anthro")
Examples
library(anthro)
Z-Score
This function calculates z-scores for the eight anthropometric indicators, weight-for- age, length/height-for-age, weight-for-length/height, body mass index (BMI)-for-age, head circumference-for-age, arm circumference-for-age, triceps skinfold-for-age and subscapular skinfold-for-age based on the WHO Child Growth Standards.
anthro_zscores(
sex = c(1, 2, 1, 1),
age = c(1001, 1000, 1010, 1000),
weight = c(18, 15, 10, 15),
lenhei = c(120, 80, 100, 100)
)
#> clenhei cbmi cmeasure csex zlen flen zwei fwei zwfl fwfl zbmi fbmi zhc
#> 1 120 12.5000 <NA> 1 7.31 1 2.20 0 -2.39 0 -3.01 0 NA
#> 2 80 23.4375 <NA> 2 -3.50 0 0.95 0 4.13 0 4.66 0 NA
#> 3 100 10.0000 <NA> 1 1.62 0 -2.76 0 -5.19 1 -5.61 1 NA
#> 4 100 15.0000 <NA> 1 1.70 0 0.69 0 -0.29 0 -0.58 0 NA
#> fhc zac fac zts fts zss fss
#> 1 NA NA NA NA NA NA NA
#> 2 NA NA NA NA NA NA NA
#> 3 NA NA NA NA NA NA NA
#> 4 NA NA NA NA NA NA NA
The returned value is a data.frame
that can further be processed or
saved as a .csv
file as in the original function.
You can also use the function with a given dataset with with
your_data_set <- read.csv("my_survey.csv")
with(
your_data_set,
anthro_zscores(
sex = sex, age = age_in_days,
weight = weight, lenhei = lenhei
)
)
To look at all parameters, type ?anthro_zscores
.
Prevalence estimates
The prevalence estimates are similiar to anthro_zscores
: again they
take vectors instead of a data frame and column names for the
aforementioned reasons.
anthro_prevalence(
sex = c(1, 2, 2, 1),
age = c(1001, 1000, 1010, 1000),
weight = c(18, 15, 10, 15),
lenhei = c(100, 80, 100, 100)
)[, 1:5]
#> Group HAZ_pop HAZ_unwpop HA_3_r HA_3_se
#> 1 All 4 4 25 25.00000
#> 2 Age group: 00-05 mo NA NA NA NA
#> 3 Age group: 06-11 mo NA NA NA NA
#> 4 Age group: 12-23 mo NA NA NA NA
#> 5 Age group: 24-35 mo 4 4 25 25.00000
#> 6 Age group: 36-47 mo NA NA NA NA
#> 7 Age group: 48-59 mo NA NA NA NA
#> 8 Sex: Female 2 2 50 40.82483
#> 9 Sex: Male 2 2 0 0.00000
#> 10 Age + sex: 00-05 mo.Female NA NA NA NA
#> 11 Age + sex: 06-11 mo.Female NA NA NA NA
#> 12 Age + sex: 12-23 mo.Female NA NA NA NA
#> 13 Age + sex: 24-35 mo.Female 2 2 50 40.82483
#> 14 Age + sex: 36-47 mo.Female NA NA NA NA
#> 15 Age + sex: 48-59 mo.Female NA NA NA NA
#> 16 Age + sex: 00-05 mo.Male NA NA NA NA
#> 17 Age + sex: 06-11 mo.Male NA NA NA NA
#> 18 Age + sex: 12-23 mo.Male NA NA NA NA
#> 19 Age + sex: 24-35 mo.Male 2 2 0 0.00000
#> 20 Age + sex: 36-47 mo.Male NA NA NA NA
#> 21 Age + sex: 48-59 mo.Male NA NA NA NA
Using the function with
it is easy to apply anthro_prevalence
to a
full dataset.
To look at all parameters, type ?anthro_prevalence
.
Contribution
Contributions are always very welcome. Please make sure to post an issue before sending a pull request.
Using the package in your own analyses
The package has been tested thoroughly, but we cannot guarantee that there aren’t any bugs nor comes this with any warranty (as with all open source software). If you find a bug or cannot reproduce results obtained with other implementations, please post an issue.